MAT137 - Calculus with proofs

- Assignment 10 due on April 8
- Test 5 opens on April 22

- Today: Applications
- Friday: More applications
 - Watch video 14.11, 14.13
 - Supplementary video: 14.15

• Please fill out course evaluations

arctan - Continued

Last time you proved that, for |x| < 1:

arctan
$$x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

3. Compute
$$A = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)3^n}$$

Integrals

I want to calculate

$$B=\int_0^1 t^{10}\sin t\ dt.$$

There are two ways to do it. Choose your favourite one:

- 1. Use integration by parts 10 times.
- 2. Use power series.

Estimate B with an error smaller than 0.001.

Add these series

1.
$$\sum_{n=2}^{\infty} \frac{(-2)^n}{(2n+1)!}$$

Hint: Think of sin

2.
$$\sum_{n=0}^{\infty} (4n+1) x^{4n+2}$$
 Hint: $\frac{d}{dx} [x^{4n+1}] =???$

3.
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)!}$$

Hint: Write first few terms. Use
$$e^1$$
 and e^{-1}

4.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)! (n+1)}$$

Hint: Integrate