MAT137 - Calculus with proofs

- Assignment 10 due on April 8
- Test 5 opens on April 22
- Today: Applications
- Friday: More applications
- Watch video 14.11, 14.13
- Supplementary video: 14.15
- Please fill out course evaluations

arctan - Continued

Last time you proved that, for $|x|<1$:

$$
\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

3. Compute $A=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}}$

Integrals

I want to calculate

$$
B=\int_{0}^{1} t^{10} \sin t d t
$$

There are two ways to do it. Choose your favourite one:

1. Use integration by parts 10 times.
2. Use power series.

Estimate B with an error smaller than 0.001 .

Add these series

1. $\sum_{n=2}^{\infty} \frac{(-2)^{n}}{(2 n+1)!}$

Hint: Think of sin

2. $\sum_{n=0}^{\infty}(4 n+1) x^{4 n+2}$

Hint: $\frac{d}{d x}\left[x^{4 n+1}\right]=? ? ?$
3. $\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!}$

Hint: Write first few terms. Use e^{1} and e^{-1}
4. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!(n+1)}$

Hint: Integrate

