## MAT137 - Calculus with proofs

- Assignment 10 due on April 8
- Test 5 opens on April 22
- Monday: Constructing new power series
- Wednesday: Applications! (Videos 14.12, 14.14)
- Please fill out course evaluations


## Taylor series gymnastics

Write the following functions as power series centered at 0 . Write them first with sigma notation, and then write out the first few terms. Indicate the domain where each expansion is valid.

1. $f(x)=e^{-x}$
2. $f(x)=x^{2} \cos x$
3. $f(x)=\frac{1}{1+x}$
4. $f(x)=\frac{1}{1-x^{2}}$
5. $f(x)=\frac{x}{3+2 x}$
6. $f(x)=\sin \left(2 x^{3}\right)$
7. $f(x)=\frac{e^{x}+e^{-x}}{2}$
8. $f(x)=\ln \frac{1+x}{1-x}$

Note: You do not need to take any derivatives. You can reduce them all to other Maclaurin series you know.

## arctan

1. Write the Maclaurin series for $G(x)=\arctan x$ Hint: Compute the first derivative. Then use the geometric series. Then integrate.
2. What is $G^{(137)}(0)$ ?
3. Compute

$$
A=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}}
$$

## arcsin

Recall (from last week): For $|x|<1$ :

$$
\begin{aligned}
f(x)=\frac{1}{\sqrt{1+x}} & =1+\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 n-1)!!}{(2 n)!!} x^{n} \\
& =1-\frac{1}{2} x+\frac{1 \cdot 3}{2 \cdot 4} x^{2}-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^{3}+\ldots
\end{aligned}
$$

4. Write $h(x)=\arcsin x$ as a power series centered at 0 . Write it with sigma notation, and also write out the first few terms.

Hint: Compute $h^{\prime}(x)$ and relate it to $f(x)$. Then integrate.
5. What is $h^{(137)}(0)$ ?

