MAT137 - Calculus with proofs

- Assignment 10 due on April 8
- Test 5 opens on April 22
- Today: Taylor polynomials
- Monday: Taylor series
- Wednesday: Analytic functions
(Videos 14.3, 14.4)
(Videos 14.5, 14.6)
(Videos 14.7, 14.8)

Warm up

Write down the (various equivalent) definitions of Taylor polynomial you have learned so far.

Taylor polynomials of a polynomial

Let $f(x)=x^{3}$.
Let P_{n} be the n-th Taylor polynomial for f at 0 .

1. Find P_{3}.

Verify it using the 1st and 2nd definitions.
2. Find P_{2}.

More Taylor polynomials of a polynomial

Let $f(x)=x^{3}$.
Let Q_{n} be the n-th Taylor polynomial for f at 1 .
3. Find Q_{3}.
4. Find Q_{2}.

A polynomial given its derivatives

1. Consider the polynomial $P(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$. Find values of the coefficients that satisfy

$$
P(0)=1, \quad P^{\prime}(0)=5, \quad P^{\prime \prime}(0)=3, \quad P^{\prime \prime \prime}(0)=-7
$$

2. Find all polynomials P (of any degree) that satisfy

$$
P(0)=1, \quad P^{\prime}(0)=5, \quad P^{\prime \prime}(0)=3, \quad P^{\prime \prime \prime}(0)=-7
$$

3. Find a polynomial P of smallest possible degree that satisfies

$$
P(0)=A, \quad P^{\prime}(0)=B, \quad P^{\prime \prime}(0)=C, \quad P^{\prime \prime \prime}(0)=D
$$

A polynomial given its derivatives

4. Let f be a C^{4} function at 0 . Construct a polynomial P that satisfies

$$
\begin{aligned}
P(0) & =f(0) \\
P^{\prime}(0) & =f^{\prime}(0) \\
P^{\prime \prime}(0) & =f^{\prime \prime}(0) \\
P^{(3)}(0) & =f^{(3)}(0) \\
P^{(4)}(0) & =f^{(4)}(0)
\end{aligned}
$$

