MAT137 - Calculus with proofs

- Assignment 9 due on March 25
- Assignment 10 due on April 8
- Test 5 opens on April 22
- Today: Power series
- Friday: Taylor polynomials
- Monday: Taylor series
- Wednesday: Analytic functions
(Videos 14.3, 14.4)
(Videos 14.5, 14.6)
(Videos 14.7, 14.8)

Interval of convergence

Find the interval of convergence of each power series:

$$
\begin{array}{ll}
\text { 1. } \sum_{n=0}^{\infty} \frac{x^{n}}{n!} & \text { 3. } \sum_{n=1}^{\infty} \frac{n^{n}}{42^{n}} x^{n} \\
\text { 2. } \sum_{n=1}^{\infty} \frac{(x-5)^{n}}{n^{2} 2^{2 n+1}} & \text { 4. (Hard!) } \sum_{n=0}^{\infty} \frac{(3 n)!}{n!(2 n)!} x^{n}
\end{array}
$$

Writing functions as power series

You know that $\quad \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad$ for $|x|<1$
Manipulate it to write the following functions as power series centered at 0 :

$$
\begin{array}{ll}
\text { 1. } g(x)=\frac{1}{1+x} & \text { 3. } h(x)=\frac{1}{1-x^{2}} \\
\text { 2. } A(x)=\frac{1}{2-x} & \text { 4. } F(x)=\ln (1+x)
\end{array}
$$

Hint: Factor 1/2.
Hint: Compute F^{\prime}

