MAT137 - Calculus with proofs

- Assignment 9 due on March 25
- Assignment 10 due on April 8
- Test 5 opens on April 22
- Today: Ratio Test
- Wednesday: Power series
(Watch Videos 14.1, 14.2)

Quick review: Convergent or divergent?

$$
\begin{array}{ll}
\text { 1. } \sum_{n}^{\infty}(1.1)^{n} & \text { 5. } \sum_{n}^{\infty} \frac{(-1)^{n}}{\ln n} \\
\text { 2. } \sum_{n}^{\infty}(0.9)^{n} & \text { 6. } \sum_{n}^{\infty} \frac{(-1)^{n}}{e^{1 / n}} \\
\text { 3. } \sum_{n}^{\infty} \frac{1}{n^{1.1}} & \text { 7. } \sum_{n}^{\infty} \frac{n^{3}+n^{2}+11}{n^{4}+2 n-3} \\
\text { 4. } \sum_{n}^{\infty} \frac{1}{n^{0.9}} & \text { 8. } \sum_{n}^{\infty} \frac{\sqrt{n^{5}+2 n+16}}{n^{4}-11 n+7}
\end{array}
$$

Ratio Test: Convergent or divergent?

Use Ratio Test to decide which series are convergent.

1. $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$
2. $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2} 3^{n+1}}$
3. $\sum_{n=2}^{\infty} \frac{n!}{n^{n}}$
4. $\sum_{n=2}^{\infty} \frac{1}{\ln n}$

Challenge

We want to calculate the value of $\quad A=\sum_{n=0}^{\infty} \frac{1}{3^{n}}, \quad B=\sum_{n=1}^{\infty} \frac{n}{3^{n}}$.
Let $f(x)=\frac{1}{1-x}$.

1. Recall that for $|x|<1$

$$
f(x)=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+\ldots
$$

Use it to compute A.
2. Pretend you can take derivatives of infinite sums the way you take them of finite sums.

$$
f^{\prime}(x)=\ldots
$$

Use it to compute B.

