MAT137 - Calculus with proofs

• Assignment 9 due on March 25

• Today: Absolute and conditional convergence

• Monday: Ratio test (Watch Videos 13.18, 13.19)

True or False - Absolute Values

1. IF $\{a_n\}_{n=1}^{\infty}$ is convergent, THEN $\{|a_n|\}_{n=1}^{\infty}$ is convergent. 2. IF $\{|a_n|\}_{n=1}^{\infty}$ is convergent, THEN $\{a_n\}_{n=1}^{\infty}$ is convergent. 3. IF $\sum_{n=1}^{\infty} a_n$ is convergent, THEN $\sum_{n=1}^{\infty} |a_n|$ is convergent. 4. IF $\sum_{n=1}^{\infty} |a_n|$ is convergent, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.

Absolutely convergent or conditionally convergent?

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{0.5}}$$

$$4. \sum_{n=1}^{\infty} \frac{\sin n}{n^{0.5}}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1.5}}$$

5.
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^{1.5}}$$

3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\arctan n}$$

6.
$$\sum_{n=1}^{\infty} \frac{\sin n}{\arctan n}$$

Convergence tests: ninja level

We know

Determine whether the following series are convergent, divergent, or we do not have enough information to decide:

Positive and negative terms - 1

• Let
$$\sum a_n$$
 be a series.

- Call $\sum_{\text{series.}}$ (P.T.) the sum of only the positive terms of the same series.
- Call $\sum_{N,T}$ (N.T.) the sum of only the negative terms of the same series.

IF \sum (P.T.) is	AND \sum (N.T.) is	THEN $\sum a_n$ may be
CONV	CONV	
∞	CONV	
CONV	$-\infty$	
∞	$-\infty$	

Positive and negative terms - 2

- Let $\sum a_n$ be a series.
- \sum (P.T.) = sum of only the positive terms of the same series.
- \sum (N.T.) = sum of only the negative terms of the same series.

	\sum (P.T.) may be	\sum (N.T.) may be
If $\sum a_n$ is CONV		
If $\sum a_n $ is CONV		
If $\sum a_n$ is ABS CONV		
If $\sum a_n$ is COND CONV		
$lf \sum a_n = \infty$		
If $\sum a_n$ is DIV oscillating		