MAT137 - Calculus with proofs

- Assignment 9 due on March 25
- Today: Alternating Series
- Friday: Absolute and conditional convergence
- Watch video 13.15
- Supplementary video: $13.16,13.17$

Rapid questions: alternating series test

Convergent or divergent?

1. $\sum_{n=1}^{\infty} \frac{1}{n^{0.5}}$
2. $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
3. $\sum_{n=1}^{\infty} \frac{1}{\sin n}$
4. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{0.5}}$
5. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}$
6. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sin n}$

Estimation

Estimate the sum

$$
S=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}
$$

with an error smaller than 0.001 . Write your final answer as a rational number (i.e. as a quotient of two integers).

Convergence tests: ninja level

We know

- $\forall n \in \mathbb{N}, a_{n}>0$.
- the series $\sum_{n}^{\infty} a_{n}$ is convergent

Determine whether the following series are convergent, divergent, or we do not have enough information to decide:

$$
\begin{array}{ll}
\text { 1. } \sum_{n}^{\infty} \sin a_{n} & \text { 3. } \sum_{n}^{\infty} \sqrt{a_{n}} \\
\text { 2. } \sum_{n}^{\infty} \cos a_{n} & \text { 4. } \sum_{n}^{\infty}\left(a_{n}\right)^{2}
\end{array}
$$

