MAT137 - Calculus with proofs

- Test 4 opens today
- Assignment 9 due on March 25
- Today: More properties of series
- Monday: Integral test \& comparison tests for series
- Watch videos 13.10, 13.12
- Supplementary video: 13.11

Rapid questions: geometric series

Convergent or divergent?

1. $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$
2. $\sum_{n=5}^{\infty} \frac{3^{n}}{2^{2 n+1}}$
3. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}$
4. $\sum_{n=3}^{\infty} \frac{3^{n}}{1000 \cdot 2^{n+2}}$
5. $\sum_{n=1}^{\infty} \frac{1}{2^{n / 2}}$
6. $\sum_{n=0}^{\infty}(-1)^{n}$

True or False - The Necessary Condition

1. IF $\lim _{n \rightarrow \infty} a_{n}=0$, THEN $\sum_{n}^{\infty} a_{n}$ is convergent.
2. IF $\lim _{n \rightarrow \infty} a_{n} \neq 0$, THEN $\sum_{n}^{\infty} a_{n}$ is divergent.
3. IF $\sum_{n}^{\infty} a_{n}$ is convergent THEN $\lim _{n \rightarrow \infty} a_{n}=0$.
4. IF $\sum_{n}^{\infty} a_{n}$ is divergent THEN $\lim _{n \rightarrow \infty} a_{n} \neq 0$.

What can you conclude?

Assume $\forall n \in \mathbb{N}, a_{n}>0$. Consider the series $\sum_{n=0}^{\infty} a_{n}$.
Let $\left\{S_{n}\right\}_{n=0}^{\infty}$ be its sequence of partial sums.
In each of the following cases, what can you conclude about the series? Is it convergent, divergent, or we do not know?

1. $\forall n \in \mathbb{N}$,
$\exists M \in \mathbb{R}$ s.t.
$S_{n} \leq M$.
2. $\exists M \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$,
$S_{n} \leq M$.
3. $\exists M>0$ s.t. $\forall n \in \mathbb{N}$,
$a_{n} \leq M$.
4. $\exists M>0$ s.t. $\forall n \in \mathbb{N}$,
$a_{n} \geq M$.

Functions as series

You know that when $|x|<1$:

$$
f(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

Find similar ways to write the following functions as series:

$$
\begin{array}{ll}
\text { 1. } g(x)=\frac{1}{1+x} & \text { 3. } G(x)=\ln (1+x) \\
\text { 2. } h(x)=\frac{1}{1-x^{2}} & \text { 4. } A(x)=\frac{1}{2-x}
\end{array}
$$

Hint: For (3.) compute G^{\prime}.

