MAT137 - Calculus with proofs

- Test 4 opens today
- Assignment 9 due on March 25

• Today: More properties of series

- Monday: Integral test & comparison tests for series
 - Watch videos 13.10, 13.12
 - Supplementary video: 13.11

Convergent or divergent?

$$1. \sum_{n=0}^{\infty} \frac{1}{2^n}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}$$

$$\sum_{n=5}^{\infty} \frac{3^n}{2^{2n+1}}$$

4

5.
$$\sum_{n=3}^{\infty} \frac{3^n}{1000 \cdot 2^{n+2}}$$

3.
$$\sum_{n=1}^{\infty} \frac{1}{2^{n/2}}$$

6.
$$\sum_{n=0}^{\infty} (-1)^n$$

- -

True or False – The Necessary Condition

1. IF
$$\lim_{n \to \infty} a_n = 0$$
, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.
2. IF $\lim_{n \to \infty} a_n \neq 0$, THEN $\sum_{n=1}^{\infty} a_n$ is divergent.
3. IF $\sum_{n=1}^{\infty} a_n$ is convergent THEN $\lim_{n \to \infty} a_n = 0$.
4. IF $\sum_{n=1}^{\infty} a_n$ is divergent THEN $\lim_{n \to \infty} a_n \neq 0$.

What can you conclude?

Assume
$$\forall n \in \mathbb{N}, a_n > 0$$
. Consider the series $\sum_{n=0}^{\infty} a_n$.
Let $\{S_n\}_{n=0}^{\infty}$ be its sequence of partial sums.

In each of the following cases, what can you conclude about the *series*? Is it convergent, divergent, or we do not know?

1.
$$\forall n \in \mathbb{N},$$
 $\exists M \in \mathbb{R} \text{ s.t.}$ $S_n \leq M.$ 2. $\exists M \in \mathbb{R} \text{ s.t.}$ $\forall n \in \mathbb{N},$ $S_n \leq M.$ 3. $\exists M > 0 \text{ s.t.}$ $\forall n \in \mathbb{N},$ $a_n \leq M.$ 4. $\exists M > 0 \text{ s.t.}$ $\forall n \in \mathbb{N},$ $a_n \geq M.$

Functions as series

You know that when |x| < 1:

$$f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

Find similar ways to write the following functions as series:

1.
$$g(x) = \frac{1}{1+x}$$

2. $h(x) = \frac{1}{1-x^2}$
3. $G(x) = \ln(1+x)$
4. $A(x) = \frac{1}{2-x}$

Hint: For (3.) compute G'.