MAT137 - Calculus with proofs

- Test 4 opens on March 12
- Assignment 9 due on March 25
- Today: Properties of series
- Friday: More properties of series Watch videos 13.8, 13.9

Geometric series

Calculate the value of the following series:

1. $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\ldots$
2. $\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\ldots$
3. $\frac{3}{2}-\frac{9}{4}+\frac{27}{8}-\frac{81}{16}+\ldots$
4. $1+\frac{1}{2^{0.5}}+\frac{1}{2}+\frac{1}{2^{1.5}}+\frac{1}{2^{2}}+\frac{1}{2^{2.5}}+\ldots$
5. $\sum_{n=1}^{\infty}(-1)^{n} \frac{3^{n}}{2^{2 n+1}}$
6. $\sum_{n=k}^{\infty} x^{n}$

Is $0.999999 \ldots=1$?

We can interpret any finite decimal expansion as a finite sum. For example:

$$
2.13096=2+\frac{1}{10}+\frac{3}{10^{2}}+\frac{0}{10^{3}}+\frac{9}{10^{4}}+\frac{6}{10^{5}}
$$

Similarly, we can interpret any infinite decimal expansion as an infinite series.

1. Write the number $0.9999999 \ldots$ as a series
2. Add up the series. Hint: it is geometric.

Examples

1. A series $\sum_{n=0}^{\infty} a_{n}$ may be
$\left\{\begin{array}{l}\text { convergent (a number) } \\ \text { divergent }\left\{\begin{array}{l}\text { to } \infty \\ \text { to }-\infty \\ \text { "oscillating" }\end{array}\right.\end{array}\right.$
Give one example of each of the four results.
2. Now assume $\forall n \in \mathbb{N}, a_{n} \geq 0$. Which of the four outcomes is still possible?

True or False - Definition of series

Let $\sum_{n=0}^{\infty} a_{n}$ be a series. Let $\left\{S_{n}\right\}_{n=0}^{\infty}$ be its partial-sum sequence.

1. IF the the series $\sum_{n=0}^{\infty} a_{n}$ is convergent,

THEN the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is bounded.
2. IF the series $\sum_{n=0}^{\infty} a_{n}$ is convergent,

THEN the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is eventually monotonic.
3. IF the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is bounded and eventually monotonic,

THEN the series $\sum_{n=0}^{\infty} a_{n}$ is convergent.

True or False - Definition of series

Let $\sum_{n=0}^{\infty} a_{n}$ be a series. Let $\left\{S_{n}\right\}_{n=0}^{\infty}$ be its partial-sum sequence.
4. IF $\forall n>0, a_{n}>0$,

THEN the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is increasing.
5. IF the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is increasing,

THEN $\forall n>0, a_{n}>0$.
6. IF $\forall n>0, a_{n} \geq 0$,

THEN the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is non-decreasing.
7. IF the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ is non-decreasing,

THEN $\forall n>0, a_{n} \geq 0$

