MAT137 - Calculus with proofs

- Assignment 7 due on February 25
- Assignment 8 due on March 4
- Test 4 opens on March 12
- Today: Sequences
- Next: Reading Week!
- After Reading Week: Properties of sequences (Watch Videos 11.3, 11.4)

Warm up

Write a formula for the general term of these sequences

1. $\left\{r_{n}\right\}_{n=0}^{\infty}=\{1,4,9,16,25, \ldots\}$
2. $\left\{s_{n}\right\}_{n=1}^{\infty}=\{1,-2,4,-8,16,-32, \ldots\}$
3. $\left\{m_{n}\right\}_{n=1}^{\infty}=\left\{\frac{2}{1!}, \frac{3}{2!}, \frac{4}{3!}, \frac{5}{4!}, \ldots\right\}$
4. $\left\{j_{n}\right\}_{n=1}^{\infty}=\{1,4,7,10,13, \ldots\}$

Sequences vs functions - convergence

For any function f with domain $[0, \infty)$, we define a sequence as $a_{n}=f(n)$.
Let $L \in \mathbb{R}$. Which of these implications is true?

1. IF $\lim _{x \rightarrow \infty} f(x)=L$, THEN $\lim _{n \rightarrow \infty} a_{n}=L$.
2. IF $\lim _{n \rightarrow \infty} a_{n}=L$, THEN $\lim _{x \rightarrow \infty} f(x)=L$.
3. IF $\lim _{n \rightarrow \infty} a_{n}=L$, THEN $\lim _{n \rightarrow \infty} a_{n+1}=L$.

Definition of limit of a sequence

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence. Let $L \in \mathbb{R}$.
Which statements are equivalent to " $\left\{a_{n}\right\}_{n=0}^{\infty} \longrightarrow L$ " ?

1. $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$.
2. $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n>n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$.
3. $\forall \varepsilon>0, \exists n_{0} \in \mathbb{R}, \forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$.
4. $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{R}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$.
5. $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right| \leq \varepsilon$.
6. $\forall \varepsilon \in(0,1), \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\varepsilon$.
7. $\forall \varepsilon>0, \quad \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\frac{1}{\varepsilon}$.
8. $\forall k \in \mathbb{Z}^{+}, \quad \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<k$.
9. $\forall k \in \mathbb{Z}^{+}, \quad \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n \geq n_{0} \Longrightarrow\left|L-a_{n}\right|<\frac{1}{k}$.
