MAT137 - Calculus with proofs

- Assignment 7 due on February 25
- Assignment 8 due on March 4
- Test 4 opens on March 12

- Today: Sequences
- Next: Reading Week!
- After Reading Week: Properties of sequences (Watch Videos 11.3, 11.4)

Warm up

Write a formula for the general term of these sequences

1.
$$\{r_n\}_{n=0}^{\infty} = \{1, 4, 9, 16, 25, ...\}$$

2.
$$\{s_n\}_{n=1}^{\infty} = \{1, -2, 4, -8, 16, -32, \dots\}$$

3.
$$\{m_n\}_{n=1}^{\infty} = \left\{ \frac{2}{1!}, \frac{3}{2!}, \frac{4}{3!}, \frac{5}{4!}, \dots \right\}$$

4.
$$\{j_n\}_{n=1}^{\infty} = \{1, 4, 7, 10, 13, \dots\}$$

Sequences vs functions – convergence

For any function f with domain $[0, \infty)$, we define a sequence as $a_n = f(n)$. Let $L \in \mathbb{R}$. Which of these implications is true?

1. IF
$$\lim_{x\to\infty} f(x) = L$$
, THEN $\lim_{n\to\infty} a_n = L$.

2. IF
$$\lim_{n\to\infty} a_n = L$$
, THEN $\lim_{x\to\infty} f(x) = L$.

3. IF
$$\lim_{n\to\infty} a_n = L$$
, THEN $\lim_{n\to\infty} a_{n+1} = L$.

Definition of limit of a sequence

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence. Let $L \in \mathbb{R}$. Which statements are equivalent to " $\{a_n\}_{n=0}^{\infty} \longrightarrow L$ "? 1. $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \forall$ $n > n_0 \implies |L - a_n| < \varepsilon.$ $n > n_0 \implies |L - a_n| < \varepsilon.$ 2. $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \forall$ 3. $\forall \varepsilon > 0, \exists n_0 \in \mathbb{R}, \forall n \in \mathbb{N},$ $n \ge n_0 \implies |L-a_n| < \varepsilon.$ 4. $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{R},$ $n > n_0 \implies |L - a_n| < \varepsilon.$ $n > n_0 \implies |L - a_n| < \varepsilon.$ 5. $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \forall$ 6. $\forall \varepsilon \in (0, 1), \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N$ $n > n_0 \implies |L - a_n| < \varepsilon.$ $n \geq n_0 \implies |L-a_n| < \frac{1}{\epsilon}.$ 7. $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}$, 8. $\forall \mathbf{k} \in \mathbb{Z}^+$, $\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}$, $n \geq n_0 \implies |L-a_n| < \mathbf{k}.$ 9. $\forall k \in \mathbb{Z}^+$, $\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \implies |L - a_n| < \frac{1}{k}$.