MAT137 - Calculus with proofs

- Deadline to add/change courses: today
- TODAY: More proofs
- FRI: Abs values and distances
- MON: Limits
(Video 2.4)
(Videos 2.1, 2.2, 2.3)

Variations on induction

Let S_{n} be a statement depending on a positive integer n.
In each of the following cases, which statements are guaranteed to be true?

1. We have proven:

- S_{3}
- $\forall n \geq 1, S_{n} \Longrightarrow S_{n+1}$

2. We have proven:

- S_{1}
- $\forall n \geq 3, S_{n} \Longrightarrow S_{n+1}$

3. We have proven:

- S_{1}
- $\forall n \geq 1, S_{n} \Longrightarrow S_{n+3}$

4. We have proven:

- S_{1}
- $\forall n \geq 1, S_{n+1} \Longrightarrow S_{n}$

Variations on induction 2

We want to prove

$$
\forall n \geq 1, S_{n}
$$

So far we have proven

- S_{1}
- $\forall n \geq 1, S_{n} \Longrightarrow S_{n+3}$.

What else do we need to do?

What is wrong with this proof by induction?

Theorem

$\forall N \geq 1$, every set of N students in MAT137 will get the same grade.

Proof.

- Base case. It is clearly true for $N=1$.
- Induction step.

Assume it is true for N. I'll show it is true for $N+1$.
Take a set of $N+1$ students. By induction hypothesis:

- The first N students get the same grade.
- The last N students get the same grade.

Hence the $N+1$ students all get the same grade.

What is wrong with this proof by induction?

For every $N \geq 1$, let

$$
\begin{gathered}
S_{N}=\text { "every set of } N \text { students in MAT137 } \\
\text { will get the same grade" }
\end{gathered}
$$

What did we actually prove in the previous page?

- S_{1} ?
- $\forall N \geq 1, \quad S_{N} \Longrightarrow S_{N+1}$?

What is wrong with this proof? (1)

Theorem

The sum of two odd numbers is even.

Proof.

3 is odd.
5 is odd.
$3+5=8$ is even.

What is wrong with this proof? (2)

Theorem

The sum of two odd numbers is always even.

Proof.

$$
\begin{aligned}
& x=2 a+1 \text { odd } \\
& y=2 b+1 \text { odd } \\
& x+y=2 n \text { even } \\
& 2 a+1+2 b+1=2 n \\
& 2 a+2 b+2=2 n \\
& a+b+1=n
\end{aligned}
$$

