MAT137 - Calculus with proofs

- Deadline to add/change courses:

Wednesday, September 23

- TODAY: Definitions and proofs
- NEXT CLASS: Proof by induction - Required videos: 1.14, 1.15

One-to-one functions

Let f be a function with domain D.
f is one-to-one means that ...

- ... different inputs (x)...
- ... must produce different outputs $(f(x))$.

Write a formal definition of "one-to-one".

One-to-one functions

Definition: Let f be a function with domain D.
f is one-to-one means ...

1. $f\left(x_{1}\right) \neq f\left(x_{2}\right)$
2. $\exists x_{1}, x_{2} \in D, f\left(x_{1}\right) \neq f\left(x_{2}\right)$
3. $\forall x_{1}, x_{2} \in D, f\left(x_{1}\right) \neq f\left(x_{2}\right)$
4. $\forall x_{1}, x_{2} \in D, x_{1} \neq x_{2}, f\left(x_{1}\right) \neq f\left(x_{2}\right)$
5. $\forall x_{1}, x_{2} \in D, x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$
6. $\forall x_{1}, x_{2} \in D, f\left(x_{1}\right) \neq f\left(x_{2}\right) \Longrightarrow x_{1} \neq x_{2}$
7. $\forall x_{1}, x_{2} \in D, f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$

One-to-one functions

Let f be a function with domain D.
What does each of the following mean?

1. $f\left(x_{1}\right) \neq f\left(x_{2}\right)$
2. $\exists x_{1}, x_{2} \in D, f\left(x_{1}\right) \neq f\left(x_{2}\right)$
3. $\forall x_{1}, x_{2} \in D, f\left(x_{1}\right) \neq f\left(x_{2}\right)$
4. $\forall x_{1}, x_{2} \in D, x_{1} \neq x_{2}, f\left(x_{1}\right) \neq f\left(x_{2}\right)$
5. $\forall x_{1}, x_{2} \in D, x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$
6. $\forall x_{1}, x_{2} \in D, f\left(x_{1}\right) \neq f\left(x_{2}\right) \Longrightarrow x_{1} \neq x_{2}$
7. $\forall x_{1}, x_{2} \in D, f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$

Proving a function is one-to-one

Definition

Let f be a function with domain D.
We say f is one-to-one when
$\begin{array}{ll}\text { - OR, equivalently, } & \forall x_{1}, x_{2} \in D, x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right) \\ \text { - } & \forall x_{1}, x_{2} \in D, f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}\end{array}$
Suppose I give you a specific function f and I ask you to prove it is one-to-one.

- Write the structure of your proof (how do you begin? what do you assume? what do you conclude?) if you use the first definition.
- Write the structure of your proof if you use the second definition.

Exercise

Prove that $f(x)=3 x+2$, with domain \mathbb{R}, is one-to-one.

Proving a function is NOT one-to-one

Definition

Let f be a function with domain D.
We say f is one-to-one when
-

- OR, equivalently,

$$
\begin{aligned}
& \forall x_{1}, x_{2} \in D, x_{1} \neq x_{2} \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right) \\
& \forall x_{1}, x_{2} \in D, f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}
\end{aligned}
$$

Suppose I give you a specific function f and I ask you to prove it is not one-to-one. You need to prove f satisfies the negation of the definition.

- Write the negation of the first definition.
- Write the negation of the second definition.
- Write the structure of your proof.

Exercise

Prove that $f(x)=x^{2}$, with domain \mathbb{R}, is not one-to-one.

