Farey Sets in \(\mathbb{R}^n \)

Aaron Fenyes

September 25, 2013

The Farey numbers of order \(Q \) are the fractions between zero and one whose denominators are less than or equal to \(Q \). You can think of these numbers as the intersection of the interval \([0, 1]\) with the set

\[
\mathcal{F}_Q = \bigcup_{q=1}^Q \frac{1}{q} \mathbb{Z},
\]

where \(\frac{1}{q} \mathbb{Z} \) is shorthand for \(\{ \frac{p}{q} \mid p \in \mathbb{Z} \} \).

An obvious analogue of \(\mathcal{F}_Q \) in \(\mathbb{R}^n \) is

\[
n\mathcal{F}_Q = \bigcup_{q=1}^Q \frac{1}{q} \mathbb{Z}^n.
\]

Look at the plots of \(^1\mathcal{F}_Q \) and \(^2\mathcal{F}_Q \) in Figures 1 and 2. What’s up with those empty regions? It turns out that in \(^n\mathcal{F}_Q \), if you pick a lattice point \(a \in \mathbb{Z}^n \) and a fraction \(r/s \) in lowest terms, the hyperplane

\[
a \cdot x = r/s
\]

is sandwiched between empty regions of width slightly greater than

\[
\frac{\text{gcf}(a)}{Qs\|a\|},
\]

with “slightly greater than” going to zero as \(Q \) goes to infinity. Here, \(\cdot \) is the standard inner product on \(\mathbb{R}^n \), \(\text{gcf}(a) \) is shorthand for \(\text{gcf}(a_1, \ldots, a_n) \), and \(\|a\| = \sqrt{a \cdot \bar{a}} \).

The observation above is a fairly straightforward consequence of the following two facts.

Fact 1. If you project \(^n\mathcal{F}_Q \) onto the line generated by \(a \in \mathbb{Z}^n \), which is isometric to \(\mathbb{R} \), you end up with

\[
\frac{\text{gcf}(a)}{\|a\|} \mathcal{F}_Q.
\]

Figure 1: A plot of \(^1\mathcal{F}_{16} \) on the interval \([-1, 1]\).
Figure 2: A plot of $^2\mathcal{F}_{40}$ in the box $[-1, 1]^2$.
Fact 2. If the fraction \(r/s \) is in lowest terms, the distances between \(r/s \) and its neighbors in \(1 \mathcal{F}_Q \) are equal to or slightly greater than \(1/Qs \), with "slightly greater than" going to zero as \(Q \) goes to infinity.

Proof of Fact 1. Since

\[
\mathcal{F}_Q = \bigcup_{q=1}^{Q} \frac{1}{q} \mathbb{Z}^n,
\]

the projection of \(\mathcal{F}_Q \) onto the line generated by \(a \in \mathbb{Z}^n \) is

\[
\bigcup_{q=1}^{Q} \frac{1}{|a|} a \mathbb{Z}^n,
\]

where \(a \cdot \mathbb{Z}^n \) is shorthand for

\[
\{a \cdot z | z \in \mathbb{Z}^n\} = \{a_1 z_1 + \ldots + a_n z_n | z_1, \ldots, z_n \in \mathbb{Z}\}.
\]

By Bézout’s identity,

\[
\{a_1 z_1 + \ldots + a_n z_n | z_1, \ldots, z_n \in \mathbb{Z}\} = \{\gcd(a_1, \ldots, a_n) z | z \in \mathbb{Z}\},
\]

in shorthand,

\[
a \cdot \mathbb{Z}^n = \gcd(a) \mathbb{Z}.
\]

Therefore, the projection of \(\mathcal{F}_Q \) onto the line generated by \(a \in \mathbb{Z}^n \) is

\[
\bigcup_{q=1}^{Q} \frac{1}{|a|} \gcd(a) \mathbb{Z} = \gcd(a) \bigcup_{q=1}^{Q} \frac{1}{q} \mathbb{Z} = \gcd(a) \mathcal{F}_Q.
\]

\(\square \)

Proof of Fact 2. Since the elements of \(\mathcal{F}_Q \) are rational numbers, we can put them in increasing order, and we can also write them as fractions in lowest terms. In this proof, I’ll think of the \(\mathcal{F}_Q \) not as sets of rational numbers, but as increasing sequences of fractions in lowest terms.

We know from the work of Charles Haros, and many others who followed him,\(^1\) that you can turn \(\mathcal{F}_Q \) into \(\mathcal{F}_Q \) by following a simple rule:

If you see two adjacent fractions \(\frac{a}{b} \) and \(\frac{c}{d} \) whose denominators add up to \(Q \), insert their mediant \(\frac{a+c}{b+d} \) between them.

Starting with \(\mathcal{F}_1 \), you can generate \(\mathcal{F}_2, \mathcal{F}_3, \mathcal{F}_4 \ldots \) by using this rule over and over. If the fraction \(r/s \) is in lowest terms, it first appears in \(\mathcal{F}_1 \), as the mediant of two fractions \(a/b \) and \(c/d \), with

\[
\frac{a}{b} < \frac{r}{s} < \frac{c}{d}.
\]

\(^1\)For details, I recommend the excellent book *A Motif of Mathematics*, by Scott Guthery.
The fraction a/b is the lower neighbor of r/s until you reach $1_{F_{b+s}}$, where a new fraction appears between a/b and r/s:

$$\frac{a+2r}{b+2s}.$$

This fraction remains the lower neighbor of r/s until it is displaced, in $1_{F_{b+2s}}$, by

$$\frac{a+2r}{b+2s}.$$

In general, the lower neighbor of r/s in $1_{F_{b+ms}}$ is

$$\frac{a+mr}{b+ms}.$$

Similarly, the upper neighbor of r/s in $1_{F_{ns+d}}$ is

$$\frac{nr+c}{ns+d}.$$

Because a/b is the lower neighbor of r/s in one of the 1_{F_Q}, we have the identity $rb - sa = 1$, which you can easily prove by induction. Hence, the distance between r/s and its lower neighbor in $1_{F_{b+ms}}$ is

$$\frac{r - a + mr}{s} - \frac{r - sa}{b + ms} = \frac{rb - sa}{s(b + ms)} = \frac{1}{s(b + ms)}.$$

Similarly, from the identity $cs - dr$, we find that the distance between r/s and its upper neighbor in $1_{F_{ns+d}}$ is

$$\frac{nr + c}{ns + d} - \frac{r}{s} = \frac{1}{s(ns + d)}.$$

Now, for any $Q \geq s$, pick the largest m so that $b + ms \leq Q$, and the largest n so that $ns + d \leq Q$. The distances between r/s and its neighbors in 1_{F_Q} are

$$\frac{1}{s(b + ms)}$$

and

$$\frac{1}{s(ns + d)},$$

respectively. Both distances are equal to or slightly greater than $1/Qs$, and as Q goes to infinity, $b + ms$ and $ns + d$ approach Q.

\[\Box\]