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Rough range:

• Up to week 5 notes.

• Up to homework 3.

1.2 A warm-up for the lower range

Textbook references:

• Chapter 7 of A First Course in Chaotic Dynamical Systems

• Section 1.5 of An Introduction to Chaotic Dynamical Systems

1.2.1 The V map

Consider the dynamical map V (x) = 3|x| − 2 on the state space R. This map is very similar
to Qc with c ∈ (−∞,−2], but can be understood much more concretely.

The graph of V looks a lot like the graph of Qc. It touches the diagonal twice, at the
points p− = −1

2
and p+ = 1. It pokes out below the bottom of the [−p+, p+] box.

p+ = 1

−1
2

= p−

p+

p−

1.2.2 The filled Julia set of the V map

Let’s say K is the filled Julia set of V . We can carve out K from R in the same way that
we carved out Kc. We start by defining L0 as Rr [−p+, p+]. The points that enter L0 after
n steps, but not before, form a subset Ln ⊂ R. You can see L0 and a graphical calculation
of L1, L2, L3 in the slides, and the pictures below.
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The reason we can understand V more concretely than Qc is that, when we’re carving out K,
we can find simple, concrete descriptions of the sets L1, L2, L3, . . . . The set Ln+1 consists of
the middle thirds of the intervals that remain when you remove L0, . . . , Ln from R. Explicitly,

L0 = (−∞,−1) ∪ (1,∞)

L1 = (−1
3
, 1
3
)

L2 = (−7
9
,−5

9
) ∪ (5

9
, 7
9
)

L3 = (−25
27
,−23

27
) ∪ (−13

27
,−11

27
) ∪ (11

27
, 13
27

) ∪ (23
27
, 25
27

)

1.2.3 An itinerary function for the V map

Now that we know what K looks like, our next goal is to find a semiconjugacy from the shift
map to V : K → K. We’ll do this using the idea of an itinerary function, which you met in
homework 3 (problem 2).

Removing L0 and L1 from R leaves two intervals. Let’s call the left one I0 and the right
one I1, as shown in the slides. The set K divides naturally into two parts: the part inside
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I0 and the part inside I1. Define a function τ : K → 2N in the following way.

the nth digit of τ(x) is

{
0 if V n(x) ∈ I0
1 if V n(x) ∈ I1

Like we did in the homework, we’ll call the starting digit of a sequence the 0th digit, and we’ll
use the convention that V 0(x) = x. The function τ is an example of an itinerary function
[see homework 3, problem 2, for another]. Intuitively, the sequence τ(x) tells you when the
orbit of x visits the left and right parts of K.

I’d like to convince you that τ is a semiconjugacy from V : K → K to the shift map.
Furthermore, τ is invertible, and its inverse is a semiconjugacy too. In other words, τ is
a conjugacy—that’s a term we learned from homework 3. As I said in the homework, two
dynamical systems connected by a conjugacy are the same for all practical purposes. So, if
we can convince ourselves that τ is a conjugacy, we’ll understand V : K → K just as well as
we understand the shift map—and we understand the shift map very well.

1.2.4 Dividing up the filled Julia set

There are lots of steps involved in showing that τ is a conjugacy, but they all rest on one
key trick: dividing K into pieces according to the first few digits of the itinerary.

Removing L0 and L1 from R left us with the two intervals I0 and I1. Each one maps to
[−p+, p+] when you apply V . Removing L2 divides each of the intervals I0 and I1 into two
“second-level” intervals. We can name them according to what happens to them when you
apply V .

The 1st half of I0 maps to I1, so we call it I01.
The 2nd half of I0 maps to I0, so we call it I00.
The 1st half of I1 maps to I0, so we call it I10.
The 2d half of I1 maps to I0, so we call it I11.

Removing L3 divides each of the second-level intervals into two “third-level” intervals. We
can name them in a similar way.

The 1st quarter of I0 maps to I11, so we call it I011.
The 2nd quarter of I0 maps to I10, so we call it I010.
The 3rd quarter of I0 maps to I00, so we call it I000.
The 4th quarter of I0 maps to I01, so we call it I001.
The 1st quarter of I1 maps to I01, so we call it I101.
The 2nd quarter of I1 maps to I00, so we call it I100.
The 3rd quarter of I1 maps to I10, so we call it I110.
The 4th quarter of I1 maps to I11, so we call it I111.

If you know which nth-level interval a point x ∈ K is inside, you know the first n digits of
τ(x). For example,

• 9
26

is inside I1, so τ( 9
26

) looks like 1 .

• 9
26

is inside I10, so τ( 9
26

) looks like 10 .
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• 9
26

is inside I101, so τ( 9
26

) looks like 101 .

Each nth-level interval has width 2/3n.

1.2.5 Our itinerary function is a conjugacy

I’d like to convince you that τ is a conjugacy from V : K → K to the shift map S : 2N → 2N.
Instead of giving you a full justification, I’ll give you a sketch that illustrates the basic ideas.
Then, if you talk about it with your classmates, you should be able to come up with a full
justification on your own.

First, I have to show τ is a semiconjugacy from V to S. That means I have to convince
you τ has the following properties.

• Desired property. We can find out what S does to τ(x) by looking at what V does to
x. In symbols,

S(τ(x)) = τ(V (x)) for all x ∈ K.

Justification. To show that the binary sequences S(τ(x)) and τ(V (x)) are equal, we
just have to show that all their digits match. We can write the digits of S(τ(x)) in
terms of the digits of τ(x) using the definition of the shift map:

the nth digit of S(τ(x)) is the (n+ 1)st digit ofτ(x).

Let’s see if we can get the same expression for the digits of τ(V (x)). We’ll start from
the definition of τ :

the nth digit of τ(V (x)) is

{
0 if V n(V (x)) ∈ I0
1 if V n(V (x)) ∈ I1

which is

{
0 if V n+1(x) ∈ I0
1 if V n+1(x) ∈ I1

which is the (n+ 1)st digit of τ(x).

It’s now apparent that all the digits of S(τ(x)) and τ(V (x)) match, so S(τ(x)) =
τ(V (x)). This conclusion holds for every x ∈ K, because our argument didn’t make
any assumptions about the value of x.

• Desired property. The function τ is continuous.

Idea for justification. Let me convince you that τ is continuous at 9
26

. I need to show
that I can keep τ(x) within any “target” open ball around 10 by keeping x close enough
to 9

26
.

The open ball B10(2
−n) is the set of sequences which match 10 for the first n+1 digits.

I can keep τ(x) within by keeping x in .
B10(2

0) I1
B10(2

1) I10
B10(2

2) I101
B10(2

3) I1010
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For each row of the table, I can find a ball around 9
26

that stays within the listed
interval by looking at the endpoints of the interval.

• Desired property. Every point in 2N has a label in K. In other words, τ is onto.

Idea for justification. We need to show that every infinite binary sequence is the
itinerary of some point in K. As an example, let’s find a point whose itinerary is 10.
Any point which is inside all of the intervals I1, I10, I101, I1010, . . . will have the itinerary
we want. Using graphical analysis to work out where these intervals are, we can express
their endpoints concretely.

I1 = [1
3
, 1
3
]

I10 = [1
3
, 4
9
]

I101 = [1
3
, 10
27

]

...

Using some basic facts about limits, it’s possible to find a point that’s inside all these
intervals.1

• Desired property. Each point in 2N has a limited number of labels in K. In other
words, τ is at most m-to-one, for some m.

Idea for justification. It turns out that τ is one-to-one: there’s only one point with
each itinerary.

As an example, let me convince you that there’s only one point with the itinerary 10.
Suppose I tell you τ(x) = 10.

Then you know x is in , which determines x to within
I1 2/3
I10 2/32

I101 2/33

I1010 2/34

...
...

As we go down the list, the “wiggle room” in the right column shrinks toward zero,
telling us that τ(x) completely determines x.

1The key fact is the “monotone convergence theorem,” which you may have learned in a calculus course.
The lower endpoints of the intervals form a sequence which is always increasing or standing still, but never
goes above a certain level. The monotone convergence theorem says a sequence like this always has a limit,
a. The upper endpoints form a sequence which is always decreasing or standing still, but never goes below a
certain level. The monotone convergence theorem says a sequence like this always has a limit, b. Any point
in [a, b] will be in all the intervals.
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