Week 8 notes

Aaron Fenyes University of Toronto Chaos, fractals, and dynamics MAT 335, Winter 2019

Term test 2

Rough range:

- Up to week 5 notes.
- Up to homework 3.

1.2 A warm-up for the lower range

Textbook references:

- Chapter 7 of A First Course in Chaotic Dynamical Systems
- Section 1.5 of An Introduction to Chaotic Dynamical Systems

1.2.1 The V map

Consider the dynamical map V(x) = 3|x| - 2 on the state space \mathbb{R} . This map is very similar to Q_c with $c \in (-\infty, -2]$, but can be understood much more concretely.

The graph of V looks a lot like the graph of Q_c . It touches the diagonal twice, at the points $p_- = -\frac{1}{2}$ and $p_+ = 1$. It pokes out below the bottom of the $[-p_+, p_+]$ box.

1.2.2 The filled Julia set of the V map

Let's say K is the filled Julia set of V. We can carve out K from \mathbb{R} in the same way that we carved out K_c . We start by defining L_0 as $\mathbb{R} \setminus [-p_+, p_+]$. The points that enter L_0 after n steps, but not before, form a subset $L_n \subset \mathbb{R}$. You can see L_0 and a graphical calculation of L_1, L_2, L_3 in the slides, and the pictures below.

The reason we can understand V more concretely than Q_c is that, when we're carving out K, we can find simple, concrete descriptions of the sets L_1, L_2, L_3, \ldots . The set L_{n+1} consists of the middle thirds of the intervals that remain when you remove L_0, \ldots, L_n from \mathbb{R} . Explicitly,

$$L_{0} = (-\infty, -1) \cup (1, \infty)$$

$$L_{1} = (-\frac{1}{3}, \frac{1}{3})$$

$$L_{2} = (-\frac{7}{9}, -\frac{5}{9}) \cup (\frac{5}{9}, \frac{7}{9})$$

$$L_{3} = (-\frac{25}{27}, -\frac{23}{27}) \cup (-\frac{13}{27}, -\frac{11}{27}) \cup (\frac{11}{27}, \frac{13}{27}) \cup (\frac{23}{27}, \frac{25}{27})$$

1.2.3 An itinerary function for the V map

Now that we know what K looks like, our next goal is to find a semiconjugacy from the shift map to $V: K \to K$. We'll do this using the idea of an *itinerary function*, which you met in homework 3 (problem 2).

Removing L_0 and L_1 from \mathbb{R} leaves two intervals. Let's call the left one I_0 and the right one I_1 , as shown in the slides. The set K divides naturally into two parts: the part inside

 I_0 and the part inside I_1 . Define a function $\tau \colon K \to 2^{\mathbb{N}}$ in the following way.

the *n*th digit of
$$\tau(x)$$
 is
$$\begin{cases} 0 & \text{if } V^n(x) \in I_0 \\ 1 & \text{if } V^n(x) \in I_1 \end{cases}$$

Like we did in the homework, we'll call the starting digit of a sequence the 0th digit, and we'll use the convention that $V^0(x) = x$. The function τ is an example of an *itinerary function* [see homework 3, problem 2, for another]. Intuitively, the sequence $\tau(x)$ tells you when the orbit of x visits the left and right parts of K.

I'd like to convince you that τ is a semiconjugacy from $V: K \to K$ to the shift map. Furthermore, τ is invertible, and its inverse is a semiconjugacy too. In other words, τ is a *conjugacy*—that's a term we learned from homework 3. As I said in the homework, two dynamical systems connected by a conjugacy are the same for all practical purposes. So, if we can convince ourselves that τ is a conjugacy, we'll understand $V: K \to K$ just as well as we understand the shift map—and we understand the shift map *very* well.

1.2.4 Dividing up the filled Julia set

There are lots of steps involved in showing that τ is a conjugacy, but they all rest on one key trick: dividing K into pieces according to the first few digits of the itinerary.

Removing L_0 and L_1 from \mathbb{R} left us with the two intervals I_0 and I_1 . Each one maps to $[-p_+, p_+]$ when you apply V. Removing L_2 divides each of the intervals I_0 and I_1 into two "second-level" intervals. We can name them according to what happens to them when you apply V.

The 1st half of	I_0	maps to	I_1 ,	so we call it	$I_{\texttt{O1}}.$
The 2nd half of	I_{0}	maps to	$I_0,$	so we call it	$I_{00}.$
The 1st half of	I_1	maps to	$I_0,$	so we call it	<i>I</i> ₁₀ .
The 2d half of	I_1	maps to	I_0 ,	so we call it	<i>I</i> ₁₁ .

Removing L_3 divides each of the second-level intervals into two "third-level" intervals. We can name them in a similar way.

The 1st quarter of	I_0	maps to	$I_{11},$	so we call it	$I_{011}.$
The 2nd quarter of	I_0	maps to	$I_{10},$	so we call it	$I_{010}.$
The 3rd quarter of	I_0	maps to	$I_{00},$	so we call it	$I_{000}.$
The 4th quarter of	I_0	maps to	$I_{\texttt{01}},$	so we call it	I_{001} .
The 1st quarter of	I_1	maps to	$I_{01},$	so we call it	<i>I</i> ₁₀₁ .
The 2nd quarter of	I_1	maps to	$I_{00},$	so we call it	$I_{100}.$
The 3rd quarter of	I_1	maps to	$I_{10},$	so we call it	<i>I</i> ₁₁₀ .
The 4th quarter of	I_1	maps to	$I_{11},$	so we call it	$I_{111}.$

If you know which nth-level interval a point $x \in K$ is inside, you know the first n digits of $\tau(x)$. For example,

- $\frac{9}{26}$ is inside I_1 , so $\tau(\frac{9}{26})$ looks like 1
- $\frac{9}{26}$ is inside I_{10} , so $\tau(\frac{9}{26})$ looks like 10

• $\frac{9}{26}$ is inside I_{101} , so $\tau(\frac{9}{26})$ looks like 101

Each *n*th-level interval has width $2/3^n$.

1.2.5 Our itinerary function is a conjugacy

I'd like to convince you that τ is a conjugacy from $V \colon K \to K$ to the shift map $S \colon \mathbf{2}^{\mathbb{N}} \to \mathbf{2}^{\mathbb{N}}$. Instead of giving you a full justification, I'll give you a sketch that illustrates the basic ideas. Then, if you talk about it with your classmates, you should be able to come up with a full justification on your own.

First, I have to show τ is a semiconjugacy from V to S. That means I have to convince you τ has the following properties.

• Desired property. We can find out what S does to $\tau(x)$ by looking at what V does to x. In symbols,

$$S(\tau(x)) = \tau(V(x))$$
 for all $x \in K$.

Justification. To show that the binary sequences $S(\tau(x))$ and $\tau(V(x))$ are equal, we just have to show that all their digits match. We can write the digits of $S(\tau(x))$ in terms of the digits of $\tau(x)$ using the definition of the shift map:

the *n*th digit of $S(\tau(x))$ is the (n+1)st digit of $\tau(x)$.

Let's see if we can get the same expression for the digits of $\tau(V(x))$. We'll start from the definition of τ :

the *n*th digit of
$$\tau(V(x))$$
 is
$$\begin{cases} 0 & \text{if } V^n(V(x)) \in I_0 \\ 1 & \text{if } V^n(V(x)) \in I_1 \end{cases}$$
which is
$$\begin{cases} 0 & \text{if } V^{n+1}(x) \in I_0 \\ 1 & \text{if } V^{n+1}(x) \in I_1 \end{cases}$$
which is the $(n+1)$ st digit of $\tau(x)$.

It's now apparent that all the digits of $S(\tau(x))$ and $\tau(V(x))$ match, so $S(\tau(x)) = \tau(V(x))$. This conclusion holds for every $x \in K$, because our argument didn't make any assumptions about the value of x.

• Desired property. The function τ is continuous.

Idea for justification. Let me convince you that τ is continuous at $\frac{9}{26}$. I need to show that I can keep $\tau(x)$ within any "target" open ball around $\overline{10}$ by keeping x close enough to $\frac{9}{26}$.

The open ball $B_{\overline{10}}(2^{-n})$ is the set of sequences which match $\overline{10}$ for the first n+1 digits.

I can keep $\tau(x)$ within		by keeping x in	
	$B_{\overline{10}}(2^0)$		I_1
	$B_{\overline{10}}(2^1)$		I_{10}
	$B_{\overline{10}}(2^2)$		I_{101}
	$B_{\overline{10}}(2^3)$		I_{1010}

For each row of the table, I can find a ball around $\frac{9}{26}$ that stays within the listed interval by looking at the endpoints of the interval.

• Desired property. Every point in $\mathbf{2}^{\mathbb{N}}$ has a label in K. In other words, τ is onto.

Idea for justification. We need to show that every infinite binary sequence is the itinerary of some point in K. As an example, let's find a point whose itinerary is $\overline{10}$. Any point which is inside all of the intervals $I_1, I_{10}, I_{101}, I_{1010}, \ldots$ will have the itinerary we want. Using graphical analysis to work out where these intervals are, we can express their endpoints concretely.

$$I_{1} = \begin{bmatrix} \frac{1}{3}, \frac{1}{3} \end{bmatrix}$$
$$I_{10} = \begin{bmatrix} \frac{1}{3}, \frac{4}{9} \end{bmatrix}$$
$$I_{101} = \begin{bmatrix} \frac{1}{3}, \frac{10}{27} \end{bmatrix}$$
$$\vdots$$

Using some basic facts about limits, it's possible to find a point that's inside all these intervals.¹

• Desired property. Each point in $2^{\mathbb{N}}$ has a limited number of labels in K. In other words, τ is at most *m*-to-one, for some *m*.

Idea for justification. It turns out that τ is one-to-one: there's only one point with each itinerary.

As an example, let me convince you that there's only one point with the itinerary $\overline{10}$. Suppose I tell you $\tau(x) = \overline{10}$.

Then you know x is in $[$,	which determines x to within	
I_1		2/3
I_{10}		$2/3^{2}$
<i>I</i> ₁₀₁		$2/3^{3}$
I ₁₀₁₀		$2/3^{4}$
÷		÷

As we go down the list, the "wiggle room" in the right column shrinks toward zero, telling us that $\tau(x)$ completely determines x.

¹The key fact is the "monotone convergence theorem," which you may have learned in a calculus course. The lower endpoints of the intervals form a sequence which is always increasing or standing still, but never goes above a certain level. The monotone convergence theorem says a sequence like this always has a limit, a. The upper endpoints form a sequence which is always decreasing or standing still, but never goes below a certain level. The monotone convergence theorem says a sequence like this always has a limit, b. Any point in [a, b] will be in all the intervals.