Week 8 notes $\begin{aligned} & \text { Aaron Fenyes } \\ & \text { University of Toronto }\end{aligned}$

Chaos, fractals, and dynamics MAT 335, Winter 2019

Term test 2

Rough range:

- Up to week 5 notes.
- Up to homework 3.

1.2 A warm-up for the lower range

Textbook references:

- Chapter 7 of A First Course in Chaotic Dynamical Systems
- Section 1.5 of An Introduction to Chaotic Dynamical Systems

1.2.1 The V map

Consider the dynamical map $V(x)=3|x|-2$ on the state space \mathbb{R}. This map is very similar to Q_{c} with $c \in(-\infty,-2]$, but can be understood much more concretely.

The graph of V looks a lot like the graph of Q_{c}. It touches the diagonal twice, at the points $p_{-}=-\frac{1}{2}$ and $p_{+}=1$. It pokes out below the bottom of the $\left[-p_{+}, p_{+}\right]$box.

1.2.2 The filled Julia set of the V map

Let's say K is the filled Julia set of V. We can carve out K from \mathbb{R} in the same way that we carved out K_{c}. We start by defining L_{0} as $\mathbb{R} \backslash\left[-p_{+}, p_{+}\right]$. The points that enter L_{0} after n steps, but not before, form a subset $L_{n} \subset \mathbb{R}$. You can see L_{0} and a graphical calculation of L_{1}, L_{2}, L_{3} in the slides, and the pictures below.

The reason we can understand V more concretely than Q_{c} is that, when we're carving out K, we can find simple, concrete descriptions of the sets $L_{1}, L_{2}, L_{3}, \ldots$. The set L_{n+1} consists of the middle thirds of the intervals that remain when you remove L_{0}, \ldots, L_{n} from \mathbb{R}. Explicitly,

$$
\begin{aligned}
& L_{0}=(-\infty,-1) \cup(1, \infty) \\
& L_{1}=\left(-\frac{1}{3}, \frac{1}{3}\right) \\
& L_{2}=\left(-\frac{7}{9},-\frac{5}{9}\right) \cup\left(\frac{5}{9}, \frac{7}{9}\right) \\
& L_{3}=\left(-\frac{25}{27},-\frac{23}{27}\right) \cup\left(-\frac{13}{27},-\frac{11}{27}\right) \cup\left(\frac{11}{27}, \frac{13}{27}\right) \cup\left(\frac{23}{27}, \frac{25}{27}\right)
\end{aligned}
$$

1.2.3 An itinerary function for the V map

Now that we know what K looks like, our next goal is to find a semiconjugacy from the shift map to $V: K \rightarrow K$. We'll do this using the idea of an itinerary function, which you met in homework 3 (problem 2).

Removing L_{0} and L_{1} from \mathbb{R} leaves two intervals. Let's call the left one I_{0} and the right one I_{1}, as shown in the slides. The set K divides naturally into two parts: the part inside
I_{0} and the part inside I_{1}. Define a function $\tau: K \rightarrow 2^{\mathbb{N}}$ in the following way.

$$
\text { the } n \text {th digit of } \tau(x) \text { is } \begin{cases}0 & \text { if } V^{n}(x) \in I_{0} \\ 1 & \text { if } V^{n}(x) \in I_{1}\end{cases}
$$

Like we did in the homework, we'll call the starting digit of a sequence the 0th digit, and we'll use the convention that $V^{0}(x)=x$. The function τ is an example of an itinerary function [see homework 3, problem 2, for another]. Intuitively, the sequence $\tau(x)$ tells you when the orbit of x visits the left and right parts of K.

I'd like to convince you that τ is a semiconjugacy from $V: K \rightarrow K$ to the shift map. Furthermore, τ is invertible, and its inverse is a semiconjugacy too. In other words, τ is a conjugacy-that's a term we learned from homework 3. As I said in the homework, two dynamical systems connected by a conjugacy are the same for all practical purposes. So, if we can convince ourselves that τ is a conjugacy, we'll understand $V: K \rightarrow K$ just as well as we understand the shift map - and we understand the shift map very well.

1.2.4 Dividing up the filled Julia set

There are lots of steps involved in showing that τ is a conjugacy, but they all rest on one key trick: dividing K into pieces according to the first few digits of the itinerary.

Removing L_{0} and L_{1} from \mathbb{R} left us with the two intervals I_{0} and I_{1}. Each one maps to $\left[-p_{+}, p_{+}\right]$when you apply V. Removing L_{2} divides each of the intervals I_{0} and I_{1} into two "second-level" intervals. We can name them according to what happens to them when you apply V.

The 1st half of	I_{0}	maps to	I_{1},	so we call it	I_{01}.
The 2nd half of	I_{0}	maps to	I_{0},	so we call it	I_{00}.
The 1st half of	I_{1}	maps to	I_{0},	so we call it	I_{10}
The 2d half of	I_{1}	maps to	I_{0},	so we call it	I_{11}.

Removing L_{3} divides each of the second-level intervals into two "third-level" intervals. We can name them in a similar way.

The 1st quarter of	I_{0}	maps to	I_{11},	so we call it	I_{011}.
The 2nd quarter of	I_{0}	maps to	I_{10},	so we call it	I_{010}.
The 3rd quarter of	I_{0}	maps to	I_{00},	so we call it	I_{000}.
The 4th quarter of	I_{0}	maps to	I_{01},	so we call it	I_{001}.
The 1st quarter of	I_{1}	maps to	I_{01},	so we call it	I_{101}.
The 2nd quarter of	I_{1}	maps to	I_{00},	so we call it	I_{100}.
The 3rd quarter of	I_{1}	maps to	I_{10},	so we call it	I_{110}.
The 4th quarter of	I_{1}	maps to	I_{11},	so we call it	I_{111}.

If you know which n th-level interval a point $x \in K$ is inside, you know the first n digits of $\tau(x)$. For example,

- $\frac{9}{26}$ is inside I_{1}, so $\tau\left(\frac{9}{26}\right)$ looks like 1
- $\frac{9}{26}$ is inside I_{10}, so $\tau\left(\frac{9}{26}\right)$ looks like 10
- $\frac{9}{26}$ is inside I_{101}, so $\tau\left(\frac{9}{26}\right)$ looks like 101

Each n th-level interval has width $2 / 3^{n}$.

1.2.5 Our itinerary function is a conjugacy

I'd like to convince you that τ is a conjugacy from $V: K \rightarrow K$ to the shift map $S: \mathbf{2}^{\mathbb{N}} \rightarrow \mathbf{2}^{\mathbb{N}}$. Instead of giving you a full justification, I'll give you a sketch that illustrates the basic ideas. Then, if you talk about it with your classmates, you should be able to come up with a full justification on your own.

First, I have to show τ is a semiconjugacy from V to S. That means I have to convince you τ has the following properties.

- Desired property. We can find out what S does to $\tau(x)$ by looking at what V does to x. In symbols,

$$
S(\tau(x))=\tau(V(x)) \quad \text { for all } x \in K
$$

Justification. To show that the binary sequences $S(\tau(x))$ and $\tau(V(x))$ are equal, we just have to show that all their digits match. We can write the digits of $S(\tau(x))$ in terms of the digits of $\tau(x)$ using the definition of the shift map:

$$
\text { the } n \text {th digit of } S(\tau(x)) \text { is the }(n+1) \text { st digit of } \tau(x) \text {. }
$$

Let's see if we can get the same expression for the digits of $\tau(V(x))$. We'll start from the definition of τ :

$$
\begin{aligned}
& \text { the } n \text {th digit of } \tau(V(x)) \text { is } \begin{cases}0 & \text { if } V^{n}(V(x)) \in I_{0} \\
1 & \text { if } V^{n}(V(x)) \in I_{1}\end{cases} \\
& \text { which is } \begin{cases}0 & \text { if } V^{n+1}(x) \in I_{0} \\
1 & \text { if } V^{n+1}(x) \in I_{1}\end{cases} \\
& \text { which is the }(n+1) \text { st digit of } \tau(x) .
\end{aligned}
$$

It's now apparent that all the digits of $S(\tau(x))$ and $\tau(V(x))$ match, so $S(\tau(x))=$ $\tau(V(x))$. This conclusion holds for every $x \in K$, because our argument didn't make any assumptions about the value of x.

- Desired property. The function τ is continuous.

Idea for justification. Let me convince you that τ is continuous at $\frac{9}{26}$. I need to show that I can keep $\tau(x)$ within any "target" open ball around $\overline{10}$ by keeping x close enough to $\frac{9}{26}$.
The open ball $B_{\overline{10}}\left(2^{-n}\right)$ is the set of sequences which match $\overline{10}$ for the first $n+1$ digits.

I can keep $\tau(x)$ within | | by keeping x in | I_{1} |
| :--- | :--- | ---: |
| | $B_{\overline{10}}\left(2^{0}\right)$ | |
| $B_{\overline{10}}\left(2^{1}\right)$ | | I_{10} |
| | $B_{\overline{10}}\left(2^{2}\right)$ | I_{101} |
| | $B_{\overline{10}}\left(2^{3}\right)$ | I_{1010} |

For each row of the table, I can find a ball around $\frac{9}{26}$ that stays within the listed interval by looking at the endpoints of the interval.

- Desired property. Every point in $\mathbf{2}^{\mathbb{N}}$ has a label in K. In other words, τ is onto.

Idea for justification. We need to show that every infinite binary sequence is the itinerary of some point in K. As an example, let's find a point whose itinerary is $\overline{10}$. Any point which is inside all of the intervals $I_{1}, I_{10}, I_{101}, I_{1010}, \ldots$ will have the itinerary we want. Using graphical analysis to work out where these intervals are, we can express their endpoints concretely.

$$
\begin{aligned}
I_{1} & =\left[\frac{1}{3}, \frac{1}{3}\right] \\
I_{10} & =\left[\frac{1}{3}, \frac{4}{9}\right] \\
I_{101} & =\left[\frac{1}{3}, \frac{10}{27}\right]
\end{aligned}
$$

Using some basic facts about limits, it's possible to find a point that's inside all these intervals. ${ }^{1}$

- Desired property. Each point in $\mathbf{2}^{\mathbb{N}}$ has a limited number of labels in K. In other words, τ is at most m-to-one, for some m.
Idea for justification. It turns out that τ is one-to-one: there's only one point with each itinerary.
As an example, let me convince you that there's only one point with the itinerary $\overline{10}$. Suppose I tell you $\tau(x)=\overline{10}$.

As we go down the list, the "wiggle room" in the right column shrinks toward zero, telling us that $\tau(x)$ completely determines x.

[^0]
[^0]: ${ }^{1}$ The key fact is the "monotone convergence theorem," which you may have learned in a calculus course. The lower endpoints of the intervals form a sequence which is always increasing or standing still, but never goes above a certain level. The monotone convergence theorem says a sequence like this always has a limit, a. The upper endpoints form a sequence which is always decreasing or standing still, but never goes below a certain level. The monotone convergence theorem says a sequence like this always has a limit, b. Any point in $[a, b]$ will be in all the intervals.

