
Week 7 notes
Aaron Fenyes
University of Toronto

Chaos, fractals, and dynamics
MAT 335, Winter 2019

1 Revisiting the dynamics of quadratic maps

1.1 Dynamics in different ranges of c

At the beginning of the course, we played with the standard quadratic maps Qc = x2 + c
on the state space R, and we noticed that different values of c led to very different kinds
of behavior. Now that we’ve learned about graphical analysis and semiconjugacy, we can
understand the behavior of Qc, and the transitions between different kinds of behavior, for
a wide range of c values.

1.1.1 The “upper range,” c ∈ (−1.4011551 . . . ,∞)

Graphical analysis is all you need

When c is above the weird-looking value −1.4011551 . . ., it’s possible to understand all the
orbits of Qc just using graphical analysis. As c decreases, the orbits get more and more
complicated. Follow along in the slides as we descend.

• c ∈ (0.25,∞)

No fixed points. All orbits fly off to the right.

↓ At c = 0.25, the graph of Qc touches the diagonal (see slides).

When c goes below 0.25, the graph of Qc crosses the diagonal twice, once with slope
just shallower than 1 and once with slope just steeper than 1. These crossings show
that Qc has developed two new fixed points—one attracting and one repelling.

• c ∈ (−0.75, 0.25)

One repelling fixed point, p+ = 1
2
(1 +

√
1− 4c).

One attracting fixed point, p− = 1
2
(1−

√
1− 4c).
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Orbits starting outside [−p+, p+] fly off to the right. The interval (−p+, p+) is a basin
of attraction for p+. The orbits of −p+ and p+ are eventually fixed at p+.

↓ When c is just above −0.75, the graph of Qc crosses the diagonal at p− with slope
just shallower than −1, and the graph of Q2

c crosses the diagonal at p− with slope just
shallower than 1 (see slides).

When c goes below −0.75, the slope of Qc at p− becomes steeper than −1, so the fixed
point p− goes from attracting to repelling. The slope of Q2

c at p− becomes steeper than
1, and two new crossings with slope just shallower than 1 appear beside the old crossing.
These new crossings show that Qc has developed a new attracting 2-periodic orbit.

• c ∈ (−1.25,−0.75)

Two repelling fixed points, p+ and p−.

One attracting 2-periodic orbit, which alternates between the points q± = 1
2
(−1 ±√

−3− 4c).

Orbits starting outside [−p+, p+] fly off to the right. Orbits starting in [−p+, p+]
approach the 2-periodic orbit, unless they’re eventually fixed.

↓ When c is just above −1.25, the graph of Q2
c crosses the diagonal at q− and q+ with

slope just shallower than −1, and the graph of Q4
c crosses the diagonal at q− and q+

with slope just shallower than 1 (see slides).

2



When c goes below −1.25, the slope of Q2
c at q± becomes steeper than −1, so the orbit

of q− and q+ goes from attracting to repelling. The slope of Q4
c at q− and q+ becomes

steeper than 1, and two new crossings with slope just shallower than 1 appear beside
each old crossing. These new crossings show that Qc has developed a new attracting
4-periodic orbit.

• c ∈ (−1.3680989 . . . ,−1.25)

Two repelling fixed pionts, p+ and p−.

One repelling 2-periodic orbit, which alternates between q±.

One attracting 4-periodic orbit.

Orbits starting outside [−p+, p+] fly off to the right. Orbits starting in [−p+, p+]
approach the 4-periodic orbit, unless they’re eventually 2-periodic or eventually fixed.

This pattern continues all the way to the bottom of the upper range. For each c ∈
(−1.4011551 . . . ,∞), the mapQc has repelling periodic orbits with minimum periods 1, 2, 4, . . . , 2n−1,
and an attracting periodic orbit with minimum period 2n. When c gets small enough, the
orbit with minimum period 2n becomes repelling, and a new attracting orbit with minimum
period 2n+1 appears.

Wikipedia has a nice table showing the first few thresholds where new orbits appear.1

An orbit of minimum period appears when c goes below
1 0.25
2 −0.75
4 −1.25
8 −1.3680989 . . .

16 −1.3940462 . . .
32 −1.3996312 . . .
64 −1.4008286 . . .

128 −1.4010853 . . .
256 −1.4011402 . . .
512 −1.4011519 . . .

1024 −1.4011545 . . .

1https://en.wikipedia.org/wiki/Feigenbaum_constants
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[Look at Adam Majewski’s bifurcation diagram,2 which shows the points with minimum
periods 1, 2, 4, 8 at each value of c.]

1.1.2 Focusing on the bounded orbits

If you want to understand Qc : R→ R, it helps to focus on the points whose orbits don’t fly
off toward infinity. These points form a subset of Kc ⊂ R, called the filled Julia set of Qc.

When c is in the “upper range” (−1.4011551 . . . ,∞), we have a very simple description
of Kc: it’s just the interval [−p+, p+]. Furthermore, we can understand all the orbits inside
Kc using graphical analysis.

1.1.3 The “middle range,” (−2,−1.4011551 . . .)

In this range, Kc is still just the interval [−p+, p+]. Unfortunately. . .

The orbits inside Kc are totally bananas

You can see how complicated the orbits get in the middle range by looking at the slides. The
last slide in the upper range shows Q−1.4, which has an attracting orbit of minimum period
32. The orbit of 0 isn’t exactly simple, but it’s much tamer than the orbit of 0 on the next
slide. Under Q−1.45, at the top of the middle range, the orbit of 0 spreads thickly over a pair
of intervals.

1.1.4 The “lower range,” c ∈ (−∞,−2]

Graphical analysis and a semiconjugacy are all you need

In most of this range, Kc isn’t an interval anymore, but we can still use graphical analysis to
get a pretty simple description of it. Furthermore, we’ll find a semiconjugacy from the shift
map to Qc : Kc → Kc. You can use that semiconjugacy to understand all the orbits inside
Kc.

• c = −2

We’ve seen this one before! Let’s recall our first two examples of semiconjugacies.

� The binary representation φ : 2N → T, which is a semiconjugacy from the shift
map to the doubling map.

2N 2N

T T

S

φ = φ

D

� The function h : T → [−2, 2] given by the formula h(θ) = 2 cos(θ), which is a
semiconjugacy from the doubling map to Q−2 : [−2, 2]→ [−2, 2].

2https://commons.wikimedia.org/wiki/File:Bifurcation_diagram_for_real_quadratic_map.

_Periodic_points_for_periods_1,2,4,and_8_are_shown.png

4



T T

[−2, 2] [−2, 2]

D

h = h

Q−2

See how the bottom of the first picture matches the top of the second? They’re just
begging us to stick them together. If we do, everything works out perfectly.

Fact. The composition of two semiconjugacies is always a semiconjugacy.

In our case, that means the composition h ◦ φ is a semiconjugacy from the shift map
to Q−2 : [−2, 2]→ [−2, 2].

2N 2N

T T

[−2, 2] [−2, 2]

S

φ = φ

D

h = h

Q−2

Using graphical analysis and a bit of algebra, you can work out that K−2 = [−2, 2].

−2

2

So, we’ve found a semiconjugacy from the shift map to Q−2 : K−2 → K−2. Later, we’ll
use this semiconjugacy to understand all the orbits in K−2. For now, though, let’s
move on to lower values of c.

• c ∈ (−∞,−2)

In this range, the filled Julia set Kc isn’t an interval anymore. Let’s see what it looks
like. Looking at the graph of Qc, the first thing we notice is that points outside
[−p+, p+] have orbits that fly off toward infinity. These points aren’t in Kc. They form
a subset L0 ⊂ R.
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The orbits starting in L0 aren’t the only ones whose orbits fly off toward infinity. If
you start close enough to zero, you’ll get an orbit that enters L0 after one step, and
then flies off toward infinity from there. The points that enter L0 after one step, but
not before, form a subset L1 ⊂ R. Since their orbits fly off toward infinity, these points
aren’t in Kc either.

Points that enter L0 after two steps, but not before, form a subset L2 ⊂ R. These
points aren’t in Kc either.
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Points that enter L0 after three steps, but not before, form a subset L3 ⊂ R. These
points aren’t in Kc either.

Every point whose orbit flies off toward infinity eventually ends up in L0. That means
every point that’s not in Kc must be in one of the subsets L0, L1, L2, L3 . . . . Turning
this reasoning around, we learn that Kc is what’s left after we remove all the subsets
L0, L1, L2, L3 . . . from R.
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You can get a rough idea of what Kc looks like by removing only the first few L
sets—for example, L0, . . . , L3 as shown above.

Now that we know what Kc looks like, our next step is to find a semiconjugacy from
the shift map to Qc : Kc → Kc. To learn how that semiconjugacy will work, let’s take
a break to study a dynamical map which is very similar to Qc with c ∈ (−∞,−2], but
can be understood much more concretely.
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