Week 3 notes

Aaron Fenyes
University of Toronto

Chaos, fractals, and dynamics
MAT 335, Winter 2019

1 Measuring distance in a general state space

1.1 Introduction

Last week, we defined attracting and repelling fixed points and orbits for dynamical systems with state space \mathbb{R}. This week, we'll generalize these definitions to other state spaces.

Key concepts we used in our definitions include:

- Open intervals
- Limits

Both can be based on the concept of distance. ${ }^{1}$ Our first goal for today is to generalize the idea of distance to other state spaces.

1.2 Examples: distance functions on \mathbb{R}, \mathbb{T}, and $2^{\mathbb{N}}$

1.2.1 The standard distance function on \mathbb{R}

Let's start with something familiar. The distance between two points $x, y \in \mathbb{R}$ is given by the function $d(x, y)=|y-x|$.

Here's another way to express this distance function, which will sometimes come in handy. If you start at the point $x \in \mathbb{R}$ and then move by a displacement of $a \in \mathbb{R}$, the distance to the place you end up is $|a|$. In other words, $d(x, x+a)=|a|$.

1.2.2 The standard distance function on \mathbb{T}

The distance between two points on the circle is the length of the shortest path along the circle from one point to another. If you start at $\theta \in \mathbb{T}$ and then move by a displacement of of $\alpha \in \mathbb{R}$, the distance to the place you end up is $|\alpha|$, as long as you didn't move more than halfway around the circle. In other words, $d(\theta, \theta+\alpha)=|\alpha|$, as long as $\alpha \in[-\pi, \pi]$.

1.2.3 The standard distance function on $2^{\mathbb{N}}$

Given two distinct sequences $x, y \in \mathbf{2}^{\mathbb{N}}$, let m be the number of digits before the first place they differ. We define $d(x, y)=2^{-m}$. For example:

[^0]> first difference $x=010100101001 \ldots$ $y=\underbrace{010101010101 \ldots}_{\substack{\text { digits before } \\ \text { first difference }}}$

$$
d(x, y)=2^{-5}=\frac{1}{32}
$$

(The textbook uses a different distance function on $\mathbf{2}^{\mathbb{N}}$. I think this one is easier to work with, and more commonly used.)

1.3 General properties of distance functions

The distance functions we just saw all take two points x, y in a state space Y and give back a number $d(x, y) \in[0, \infty)$. They share the following three properties.

- Distance is the same in both directions.

$$
d(x, y)=d(y, x) \quad \text { for all } x, y \in Y
$$

- The distance from a point to itself is zero, and points with zero distance between them are the same.

$$
x=y \Longleftrightarrow d(x, y)=0
$$

- Direct trips are the shortest.

$$
d(x, y) \leq d(x, p)+d(p, y) \quad \text { for all } x, y, p \in Y
$$

This property is called the triangle inequality.
These properties turn out to capture the essential features of a distance function. Functions that satisfy them tend to meet people's expectations for how a distance function should behave. A function that satisfies these properties is called a metric.

1.4 Open balls

Given a point x, it's often useful to know which points are within a certain distance of x. We define the open ball of radius r around x as the set

$$
B_{x}(r)=\{y \in Y: d(x, y)<r\}
$$

Here are some examples.

- [Sketch $B_{x}(r)$ in \mathbb{R}.]
- [Sketch $B_{x}(r)$ in \mathbb{R}^{2}.] The term "ball" comes from this example.
- [Sketch $B_{x}(r)$ in \mathbb{T} for $r \leq \pi$ and $\pi \leq r$.]
- In $2^{\mathbb{N}}$, the open ball $B_{x}\left(2^{-n}\right)$ is the set of sequences which match x for the first $n+1$ digits.

1.5 Limits

Once we have a metric on Y, we can define the limits of sequences just like we do in \mathbb{R}.
Informal definition. The point $p \in Y$ is a limit of the sequence $y_{1}, y_{2}, y_{3}, y_{4}, \ldots$ if we can get y_{n} as close as we want to p just by making n large enough.

Formal definition. The point $p \in Y$ is a limit of $y_{1}, y_{2}, y_{3}, y_{4}, \ldots$ if for every radius $r>0$, no matter how small, the sequence has a "tail" $y_{N}, y_{N+1}, y_{N+2}, y_{N+3}, \ldots$ that always stays inside $B_{p}(r)$.

When you define limits in terms of distance, like we'll always do in this course, a sequence can have at most one limit. ${ }^{2}$ So, it makes sense to use the shorthand $\lim _{n \rightarrow \infty} y_{n}=p$ when we want to say p is a limit of $y_{1}, y_{2}, y_{3}, y_{4}, \ldots$.

2 Attraction and repulsion in a general state space

2.1 Definition

Consider a dynamical system with state space Y and dynamical map F. The point $p \in Y$ is a fixed point of F.

- A basin of attraction for p is an open ball U with the following properties.
- U contains p.
- Every orbit starting in U stays in U forever.
- Every orbit starting in U limits to p.

If there's a basin of attraction for p, we say p is attracting. ${ }^{3}$
(The second property is equivalent to the property that $F(U) \subset U$, using our shorthand from last week.)

- A region of repulsion for p is an open ball U with the following properties.
- U contains p.
- Every orbit starting in U eventually leaves U, unless it starts at p. (It only has to leave once; it can come back later.)

If there's a region of repulsion for p, we say p is repelling. ${ }^{4}$

[^1]
2.2 Examples

2.2.1 The doubling map

We learned earlier that the doubling map $D: \mathbb{T} \rightarrow \mathbb{T}$ has one fixed point: the angle 0 . It turns out to be repelling. Here's how to see this.

- The easy way: use the linearization trick we learned last week, which works for the state space \mathbb{T} as well as for \mathbb{R}. Observe that D is differentiable near 0 , with $\left|D^{\prime}(t)\right|>1$. It follows that 0 is repelling.
- The straightforward way: find a region of repulsion. The ball $B_{0}\left(\frac{\pi}{2}\right)$ will do the trick. Pick any point $\theta \in B_{0}\left(\frac{\pi}{2}\right)$ other than 0 , and express it as a number $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Observe that $D^{n}(t) \equiv 2^{n} t$. We can always find a whole number n with $\left|2^{n} t\right| \in\left[\frac{\pi}{2}, \pi\right)$.

2.2.2 The shift map

We learned earlier that the shift map $S: \mathbf{2}^{\mathbb{N}} \rightarrow \mathbf{2}^{\mathbb{N}}$ has two fixed points: $\overline{0}$ and $\overline{1}$. They both turn out to be repelling. Here's how to show this.

I claim that $B_{\overline{0}}(1)$ is a region of repulsion for $\overline{0}$. To see why, pick any point $x \in B_{\overline{0}}(1)$ other than $\overline{0}$. Since $1=2^{-0}$, the sequences in $B_{\overline{0}}(1)$ are the ones that have the same first digit as $\overline{0}$. Hence,

$$
x=0
$$

Since x is not $\overline{0}$, it must have a 1 somewhere.

$$
x=\underbrace{0}_{n \text { digits }} 1
$$

Let's say there's a 1 with n digits before it. Since S^{n} erases the first n digits, $S^{n}(x)$ starts with a 1.

$$
S^{n}(x)=1
$$

Hence, $S^{n}(x)$ is not in $B_{\overline{0}}(1)$.
In summary, we've shown that for any $x \in B_{\overline{0}}(1)$ other than $\overline{0}$, there's some time n at which $S^{n}(x)$ leaves $B_{\overline{0}}(1)$. That means $B_{\overline{0}}(1)$ is a region of repulsion.

2.2.3 Sweeping away the 1 s

In the homework, we defined a dynamical map $A: \mathbf{2}^{\mathbb{N}} \rightarrow \mathbf{2}^{\mathbb{N}}$.

- Defining rule: when you apply A, each 1 that's followed by a 0 turns into a 0 .
- Fixed points:

$$
\begin{aligned}
p_{n} & =\underbrace{000 \ldots 0}_{n} 11111 \ldots \\
q & =000000000000 \ldots
\end{aligned}
$$

The fixed point p_{n} turns out to be repelling for every $n \in\{0,1,2 \ldots\}$. The open ball $B_{p_{n}}\left(2^{-n}\right)$ is a region of repulsion. To see why, consider any $x \in B_{p_{n}}\left(2^{-n}\right)$ other than p_{n}. By the definition of an open ball, $d\left(p_{n}, x\right)<2^{-n}$, so x matches p_{n} for at least the first $n+1$ digits:

$$
x=\underbrace{000 \ldots 0}_{n} 1
$$

Since $x \neq p_{n}$, there must be a 0 somewhere after that initial 1 :

$$
x=\underbrace{000 \ldots 0}_{n} 1 \quad 0
$$

Hence, the orbit of x eventually reaches

$$
\underbrace{000 \ldots 0}_{n} 0
$$

which is outside $B_{p_{n}}\left(2^{-n}\right)$.

[^0]: ${ }^{1}$ They don't have to be, though. Ask me about this later if you'd like to learn more.

[^1]: ${ }^{2}$ For the one or two students who've studied topology: this comes from the more general fact that a sequence in a Hausdorff space can have at most one limit. A topology defined in terms of a metric is always Hausdorff.
 ${ }^{3}$ The textbook uses the term weakly attracting.
 ${ }^{4}$ The textbook uses the term weakly repelling.

