Week 3 notes

Aaron Fenyes University of Toronto

1 Measuring distance in a general state space

1.1 Introduction

Last week, we defined attracting and repelling fixed points and orbits for dynamical systems with state space \mathbb{R} . This week, we'll generalize these definitions to other state spaces.

Key concepts we used in our definitions include:

- Open intervals
- Limits

Both can be based on the concept of distance.¹ Our first goal for today is to generalize the idea of distance to other state spaces.

1.2 Examples: distance functions on \mathbb{R} , \mathbb{T} , and $2^{\mathbb{N}}$

1.2.1 The standard distance function on \mathbb{R}

Let's start with something familiar. The distance between two points $x, y \in \mathbb{R}$ is given by the function d(x, y) = |y - x|.

Here's another way to express this distance function, which will sometimes come in handy. If you start at the point $x \in \mathbb{R}$ and then move by a displacement of $a \in \mathbb{R}$, the distance to the place you end up is |a|. In other words, d(x, x + a) = |a|.

1.2.2 The standard distance function on $\mathbb T$

The distance between two points on the circle is the length of the shortest path along the circle from one point to another. If you start at $\theta \in \mathbb{T}$ and then move by a displacement of of $\alpha \in \mathbb{R}$, the distance to the place you end up is $|\alpha|$, as long as you didn't move more than halfway around the circle. In other words, $d(\theta, \theta + \alpha) = |\alpha|$, as long as $\alpha \in [-\pi, \pi]$.

1.2.3 The standard distance function on $2^{\mathbb{N}}$

Given two distinct sequences $x, y \in \mathbf{2}^{\mathbb{N}}$, let *m* be the number of digits before the first place they differ. We define $d(x, y) = 2^{-m}$. For example:

¹They don't have to be, though. Ask me about this later if you'd like to learn more.

(The textbook uses a different distance function on $2^{\mathbb{N}}$. I think this one is easier to work with, and more commonly used.)

1.3 General properties of distance functions

The distance functions we just saw all take two points x, y in a state space Y and give back a number $d(x, y) \in [0, \infty)$. They share the following three properties.

• Distance is the same in both directions.

$$d(x,y) = d(y,x)$$
 for all $x, y \in Y$

• The distance from a point to itself is zero, and points with zero distance between them are the same.

$$x = y \iff d(x, y) = 0$$

• Direct trips are the shortest.

$$d(x,y) \le d(x,p) + d(p,y)$$
 for all $x, y, p \in Y$

This property is called the *triangle inequality*.

These properties turn out to capture the essential features of a distance function. Functions that satisfy them tend to meet people's expectations for how a distance function should behave. A function that satisfies these properties is called a *metric*.

1.4 Open balls

Given a point x, it's often useful to know which points are within a certain distance of x. We define the *open ball* of radius r around x as the set

$$B_x(r) = \{ y \in Y \colon d(x, y) < r \}.$$

Here are some examples.

- [Sketch $B_x(r)$ in \mathbb{R} .]
- [Sketch $B_x(r)$ in \mathbb{R}^2 .] The term "ball" comes from this example.
- [Sketch $B_x(r)$ in \mathbb{T} for $r \leq \pi$ and $\pi \leq r$.]
- In $\mathbf{2}^{\mathbb{N}}$, the open ball $B_x(2^{-n})$ is the set of sequences which match x for the first n+1 digits.

1.5 Limits

Once we have a metric on Y, we can define the limits of sequences just like we do in \mathbb{R} .

Informal definition. The point $p \in Y$ is a *limit* of the sequence $y_1, y_2, y_3, y_4, \ldots$ if we can get y_n as close as we want to p just by making n large enough.

Formal definition. The point $p \in Y$ is a *limit* of $y_1, y_2, y_3, y_4, \ldots$ if for every radius r > 0, no matter how small, the sequence has a "tail" $y_N, y_{N+1}, y_{N+2}, y_{N+3}, \ldots$ that always stays inside $B_p(r)$.

When you define limits in terms of distance, like we'll always do in this course, a sequence can have at most one limit.² So, it makes sense to use the shorthand $\lim_{n\to\infty} y_n = p$ when we want to say p is a limit of $y_1, y_2, y_3, y_4, \ldots$

2 Attraction and repulsion in a general state space

2.1 Definition

Consider a dynamical system with state space Y and dynamical map F. The point $p \in Y$ is a fixed point of F.

- A basin of attraction for p is an open ball U with the following properties.
 - -U contains p.
 - Every orbit starting in U stays in U forever.
 - Every orbit starting in U limits to p.

If there's a basin of attraction for p, we say p is attracting.³

(The second property is equivalent to the property that $F(U) \subset U$, using our shorthand from last week.)

- A region of repulsion for p is an open ball U with the following properties.
 - -U contains p.
 - Every orbit starting in U eventually leaves U, unless it starts at p.
 - (It only has to leave once; it can come back later.)

If there's a region of repulsion for p, we say p is repelling.⁴

²For the one or two students who've studied topology: this comes from the more general fact that a sequence in a Hausdorff space can have at most one limit. A topology defined in terms of a metric is always Hausdorff.

 $^{^3\}mathrm{The}$ textbook uses the term weakly attracting.

⁴The textbook uses the term *weakly repelling*.

2.2 Examples

2.2.1 The doubling map

We learned earlier that the doubling map $D: \mathbb{T} \to \mathbb{T}$ has one fixed point: the angle 0. It turns out to be repelling. Here's how to see this.

- The easy way: use the linearization trick we learned last week, which works for the state space \mathbb{T} as well as for \mathbb{R} . Observe that D is differentiable near 0, with |D'(t)| > 1. It follows that 0 is repelling.
- The straightforward way: find a region of repulsion. The ball $B_0(\frac{\pi}{2})$ will do the trick. Pick any point $\theta \in B_0(\frac{\pi}{2})$ other than 0, and express it as a number $t \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Observe that $D^n(t) \equiv 2^n t$. We can always find a whole number n with $|2^n t| \in [\frac{\pi}{2}, \pi)$.

2.2.2 The shift map

We learned earlier that the shift map $S: \mathbf{2}^{\mathbb{N}} \to \mathbf{2}^{\mathbb{N}}$ has two fixed points: $\overline{\mathbf{0}}$ and $\overline{\mathbf{1}}$. They both turn out to be repelling. Here's how to show this.

I claim that $B_{\overline{0}}(1)$ is a region of repulsion for $\overline{0}$. To see why, pick any point $x \in B_{\overline{0}}(1)$ other than $\overline{0}$. Since $1 = 2^{-0}$, the sequences in $B_{\overline{0}}(1)$ are the ones that have the same first digit as $\overline{0}$. Hence,

x = 0

Since x is not $\overline{0}$, it must have a 1 somewhere.

$$x = \underbrace{\mathbf{0}}_{n \text{ digits}} \mathbf{1}$$

Let's say there's a 1 with n digits before it. Since S^n erases the first n digits, $S^n(x)$ starts with a 1.

$$S^n(x) = 1$$

Hence, $S^n(x)$ is not in $B_{\overline{0}}(1)$.

In summary, we've shown that for any $x \in B_{\overline{0}}(1)$ other than $\overline{0}$, there's some time n at which $S^n(x)$ leaves $B_{\overline{0}}(1)$. That means $B_{\overline{0}}(1)$ is a region of repulsion.

2.2.3 Sweeping away the 1s

In the homework, we defined a dynamical map $A \colon \mathbf{2}^{\mathbb{N}} \to \mathbf{2}^{\mathbb{N}}$.

- Defining rule: when you apply A, each 1 that's followed by a 0 turns into a 0.
- Fixed points:

$$p_n = \underbrace{000\dots0}_n 11111\dots$$
$$q = 00000000000\dots$$

The fixed point p_n turns out to be repelling for every $n \in \{0, 1, 2...\}$. The open ball $B_{p_n}(2^{-n})$ is a region of repulsion. To see why, consider any $x \in B_{p_n}(2^{-n})$ other than p_n . By the definition of an open ball, $d(p_n, x) < 2^{-n}$, so x matches p_n for at least the first n + 1 digits:

$$x = \underbrace{000\dots0}_n 1$$

Since $x \neq p_n$, there must be a 0 somewhere after that initial 1:

$$x = \underbrace{000\ldots0}_{n} 1 \qquad 0$$

Hence, the orbit of x eventually reaches

$$\underbrace{\underbrace{000\ldots0}_n}^{n} 0$$

which is outside $B_{p_n}(2^{-n})$.