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1 Measuring distance in a general state space

1.1 Introduction

Last week, we defined attracting and repelling fixed points and orbits for dynamical systems
with state space R. This week, we’ll generalize these definitions to other state spaces.

Key concepts we used in our definitions include:

• Open intervals

• Limits

Both can be based on the concept of distance.1 Our first goal for today is to generalize the
idea of distance to other state spaces.

1.2 Examples: distance functions on R, T, and 2N

1.2.1 The standard distance function on R

Let’s start with something familiar. The distance between two points x, y ∈ R is given by
the function d(x, y) = |y − x|.

Here’s another way to express this distance function, which will sometimes come in handy.
If you start at the point x ∈ R and then move by a displacement of a ∈ R, the distance to
the place you end up is |a|. In other words, d(x, x+ a) = |a|.

1.2.2 The standard distance function on T

The distance between two points on the circle is the length of the shortest path along the
circle from one point to another. If you start at θ ∈ T and then move by a displacement of
of α ∈ R, the distance to the place you end up is |α|, as long as you didn’t move more than
halfway around the circle. In other words, d(θ, θ + α) = |α|, as long as α ∈ [−π, π].

1.2.3 The standard distance function on 2N

Given two distinct sequences x, y ∈ 2N, let m be the number of digits before the first place
they differ. We define d(x, y) = 2−m. For example:

1They don’t have to be, though. Ask me about this later if you’d like to learn more.
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x = 0 1 0 1 0 0 1 0 1 0 0 1 . . .

y = 0 1 0 1 0 1 0 1 0 1 0 1 . . .

first difference

5 digits before

first difference

d(x, y) = 2−5 = 1
32

x = 0 1 1 1 1 1 1 1 1 1 1 1 . . .

y = 1 0 0 0 0 1 0 0 0 0 0 0 . . .

first difference

0 digits before

first difference

d(x, y) = 2−0 = 1

(The textbook uses a different distance function on 2N. I think this one is easier to work
with, and more commonly used.)

1.3 General properties of distance functions

The distance functions we just saw all take two points x, y in a state space Y and give back
a number d(x, y) ∈ [0,∞). They share the following three properties.

• Distance is the same in both directions.

d(x, y) = d(y, x) for all x, y ∈ Y

• The distance from a point to itself is zero, and points with zero distance between them
are the same.

x = y ⇐⇒ d(x, y) = 0

• Direct trips are the shortest.

d(x, y) ≤ d(x, p) + d(p, y) for all x, y, p ∈ Y

This property is called the triangle inequality.

These properties turn out to capture the essential features of a distance function. Functions
that satisfy them tend to meet people’s expectations for how a distance function should
behave. A function that satisfies these properties is called a metric.

1.4 Open balls

Given a point x, it’s often useful to know which points are within a certain distance of x.
We define the open ball of radius r around x as the set

Bx(r) = {y ∈ Y : d(x, y) < r}.

Here are some examples.

• [Sketch Bx(r) in R.]

• [Sketch Bx(r) in R2.] The term “ball” comes from this example.

• [Sketch Bx(r) in T for r ≤ π and π ≤ r.]

• In 2N, the open ball Bx(2
−n) is the set of sequences which match x for the first n + 1

digits.
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1.5 Limits

Once we have a metric on Y , we can define the limits of sequences just like we do in R.

Informal definition. The point p ∈ Y is a limit of the sequence y1, y2, y3, y4, . . . if we can
get yn as close as we want to p just by making n large enough.

Formal definition. The point p ∈ Y is a limit of y1, y2, y3, y4, . . . if for every radius r > 0,
no matter how small, the sequence has a “tail” yN , yN+1, yN+2, yN+3, . . . that always stays
inside Bp(r).

When you define limits in terms of distance, like we’ll always do in this course, a sequence
can have at most one limit.2 So, it makes sense to use the shorthand limn→∞ yn = p when
we want to say p is a limit of y1, y2, y3, y4, . . . .

2 Attraction and repulsion in a general state space

2.1 Definition

Consider a dynamical system with state space Y and dynamical map F . The point p ∈ Y is
a fixed point of F .

• A basin of attraction for p is an open ball U with the following properties.

– U contains p.

– Every orbit starting in U stays in U forever.

– Every orbit starting in U limits to p.

If there’s a basin of attraction for p, we say p is attracting.3

(The second property is equivalent to the property that F (U) ⊂ U , using our shorthand
from last week.)

• A region of repulsion for p is an open ball U with the following properties.

– U contains p.

– Every orbit starting in U eventually leaves U , unless it starts at p.

(It only has to leave once; it can come back later.)

If there’s a region of repulsion for p, we say p is repelling.4

2For the one or two students who’ve studied topology: this comes from the more general fact that a
sequence in a Hausdorff space can have at most one limit. A topology defined in terms of a metric is always
Hausdorff.

3The textbook uses the term weakly attracting.
4The textbook uses the term weakly repelling.
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2.2 Examples

2.2.1 The doubling map

We learned earlier that the doubling map D : T → T has one fixed point: the angle 0. It
turns out to be repelling. Here’s how to see this.

• The easy way: use the linearization trick we learned last week, which works for the
state space T as well as for R. Observe that D is differentiable near 0, with |D′(t)| > 1.
It follows that 0 is repelling.

• The straightforward way: find a region of repulsion. The ball B0(
π
2
) will do the trick.

Pick any point θ ∈ B0(
π
2
) other than 0, and express it as a number t ∈ (−π

2
, π
2
).

Observe that Dn(t) ≡ 2nt. We can always find a whole number n with |2nt| ∈ [π
2
, π).

2.2.2 The shift map

We learned earlier that the shift map S : 2N → 2N has two fixed points: 0 and 1. They both
turn out to be repelling. Here’s how to show this.

I claim that B0(1) is a region of repulsion for 0. To see why, pick any point x ∈ B0(1)
other than 0. Since 1 = 2−0, the sequences in B0(1) are the ones that have the same first
digit as 0. Hence,

x = 0 .

Since x is not 0, it must have a 1 somewhere.

x = 0︸ ︷︷ ︸
n digits

1 .

Let’s say there’s a 1 with n digits before it. Since Sn erases the first n digits, Sn(x) starts
with a 1.

Sn(x) = 1

Hence, Sn(x) is not in B0(1).
In summary, we’ve shown that for any x ∈ B0(1) other than 0, there’s some time n at

which Sn(x) leaves B0(1). That means B0(1) is a region of repulsion.

2.2.3 Sweeping away the 1s

In the homework, we defined a dynamical map A : 2N → 2N.

• Defining rule: when you apply A, each 1 that’s followed by a 0 turns into a 0.

• Fixed points:

pn = 000 . . . 0︸ ︷︷ ︸
n

11111 . . .

q = 000000000000 . . .
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The fixed point pn turns out to be repelling for every n ∈ {0, 1, 2 . . .}. The open ball
Bpn(2−n) is a region of repulsion. To see why, consider any x ∈ Bpn(2−n) other than pn. By
the definition of an open ball, d(pn, x) < 2−n, so x matches pn for at least the first n + 1
digits:

x = 000 . . . 0︸ ︷︷ ︸
n

1 .

Since x 6= pn, there must be a 0 somewhere after that initial 1:

x = 000 . . . 0︸ ︷︷ ︸
n

1 0 .

Hence, the orbit of x eventually reaches

000 . . . 0︸ ︷︷ ︸
n

0 ,

which is outside Bpn(2−n).
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