
Filled Julia sets of complex quadratic maps

c = −2.5

I Points further than

1
2 +

√
1
4 + d(c , 0)

from 0 always fly off
toward ∞.

I These points form a
set L0.

I The points that reach
L0 after n steps form
a set Ln.
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Filled Julia sets of complex quadratic maps

c = −2.5

I When c is in the
lower region,

Qc : C→ C

has the same filled
Julia set as

Qc : R→ R.

I We get a nice way to
visualize this weird
subset of R.
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I At the very top of the
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Filled Julia sets of complex quadratic maps

c = −0.512511498

387847167

+ 0.521295573

094847167i

I Tiny changes in c can
have a big effect on
the filled Julia set.

I Source: Martin Doege

I https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_

Matplotlib.svg
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Adrien Douady, one
of the first people to
study the dynamics of
complex quadratic
maps.
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Special kinds of filled Julia sets

c = −1 + 2
3 i

I In the end, the filled
Julia set breaks down
into infinitely many
separate points.

I This kind of Julia set
is called Cantor dust.
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Special kinds of filled Julia sets

c = −1 + 2
3 i

I We can define an
itinerary map

τ : Kc → 2N.

I It’s a conjugacy from

Qc : Kc → Kc .

to the shift map.

I This works whenever
Kc is Cantor dust.
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