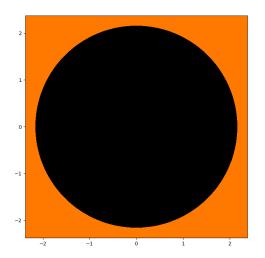


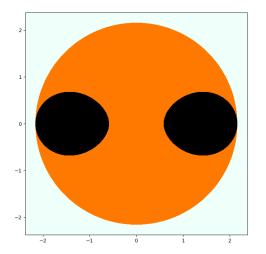
$$c = -2.5$$

Points further than

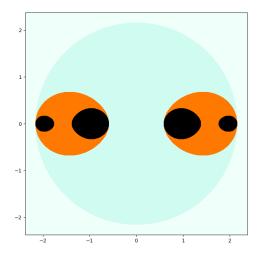
- $\frac{1}{2} + \sqrt{\frac{1}{4} + d(c, 0)}$
- from 0 always fly off toward ∞ .
- These points form a set L₀.
- The points that reach L₀ after n steps form a set L_n.



$$c = -2.5$$



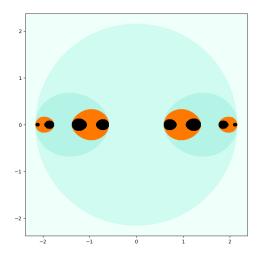
$$c = -2.5$$



$$c = -2.5$$

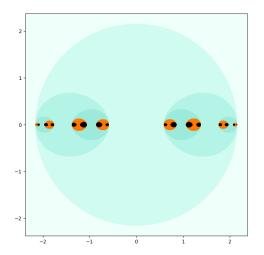
• Cut out
$$L_0$$
.

- Cut out L_1 .
- Cut out L_2 .



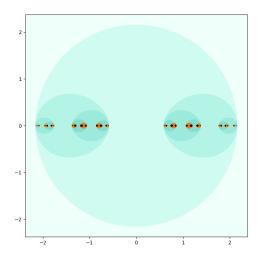
$$c = -2.5$$

- Cut out L_1 .
- Cut out L_2 .
- ► Cut out *L*₃.



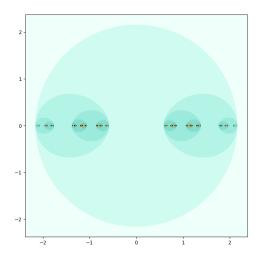
$$c = -2.5$$

- Cut out L_1 .
- Cut out L_2 .
- ► Cut out *L*₃.
- ► Cut out *L*₄.



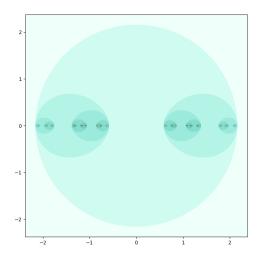
$$c = -2.5$$

- Cut out L_1 .
- Cut out L_2 .
- ► Cut out *L*₃.
- Cut out L₄.
- ▶ Cut out L₅.



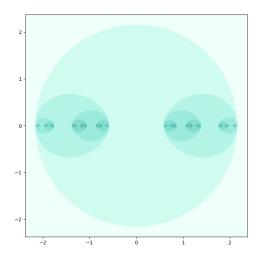
$$c = -2.5$$

- Cut out L_1 .
- Cut out L_2 .
- Cut out L_3 .
- Cut out L₄.
- ▶ Cut out L₅.
- Cut out L_6 .



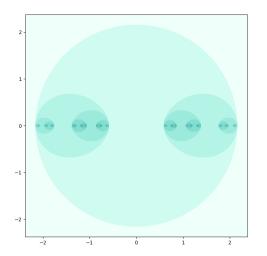
$$c = -2.5$$

- Cut out L_1 .
- Cut out L_2 .
- Cut out L₃.
- Cut out L₄.
- Cut out L₅.
- Cut out L_6 .
- Cut out L_7 .



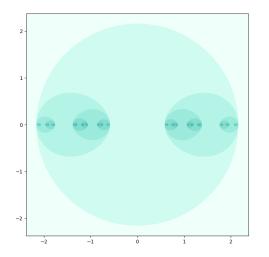
$$c = -2.5$$

- Cut out L_1 .
- Cut out L_2 .
- Cut out L₃.
- Cut out L₄.
- Cut out L₅.
- Cut out L_6 .
- Cut out L₇.



$$c = -2.5$$

- Cut out L_1 .
- Cut out L_2 .
- Cut out L₃.
- Cut out L₄.
- Cut out L₅.
- Cut out L_6 .
- Cut out L₇.



$$c = -2.5$$

 $Q_c \colon \mathbb{C} \to \mathbb{C}$

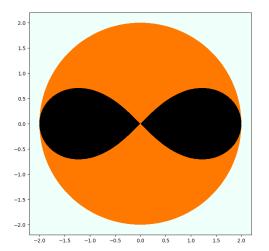
has the same filled Julia set as

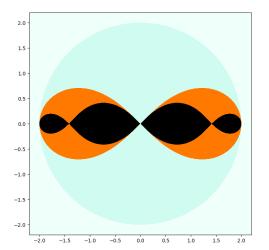
 $Q_c \colon \mathbb{R} \to \mathbb{R}.$

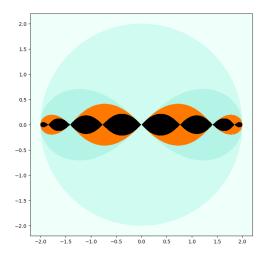
We get a nice way to visualize this weird subset of R.

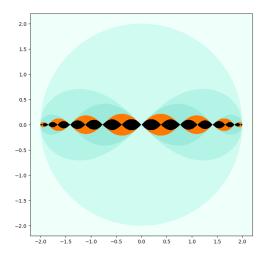


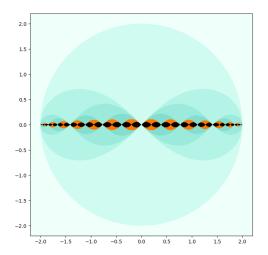
c = -2

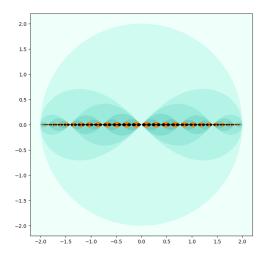


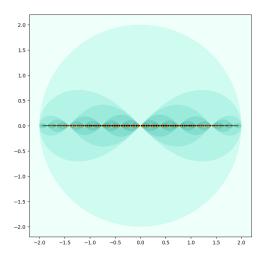


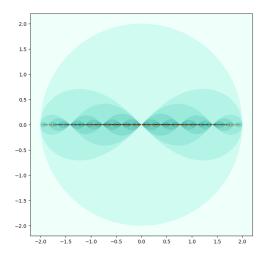


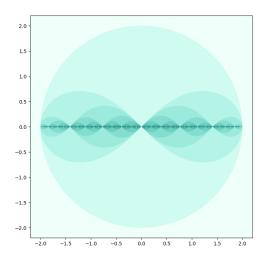










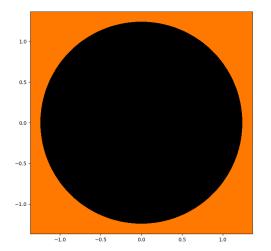


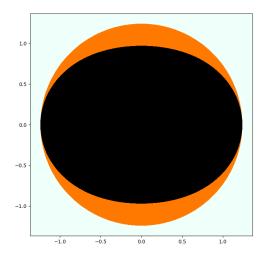
c = -2

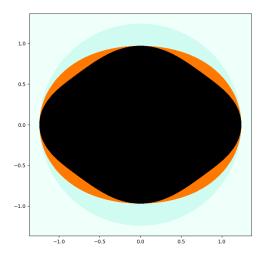
 At the very top of the lower region, the filled Julia set is

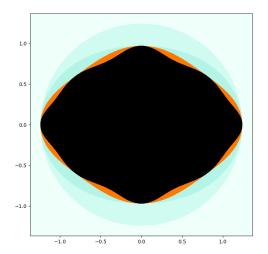
$$[-2,2]\subset \mathbb{R},$$

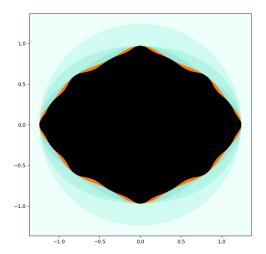
as expected.

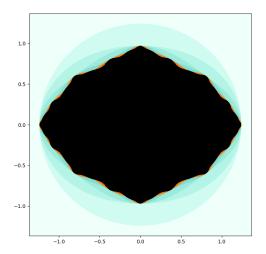


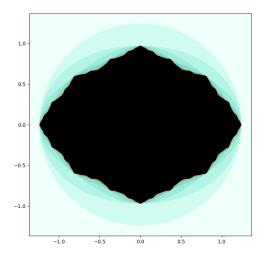


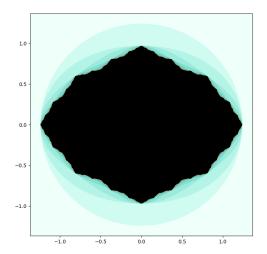


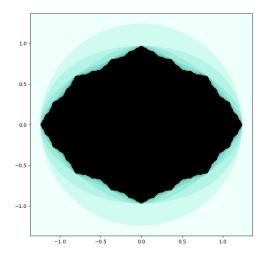


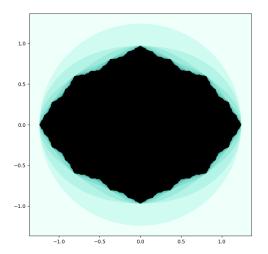






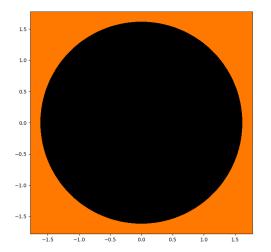




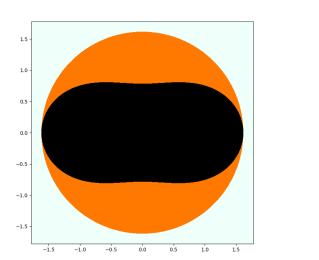


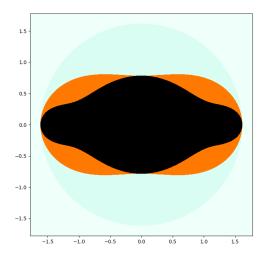
$$c = -0.3$$

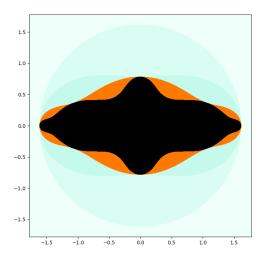
When c is in the upper region, the filled Julia set extends above and below the real axis.

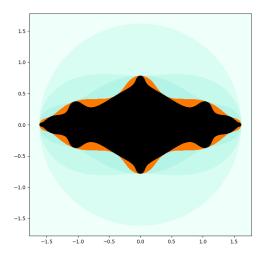


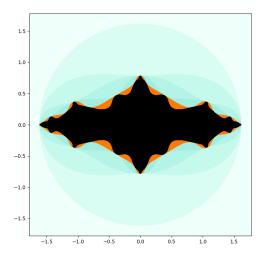
c = -1

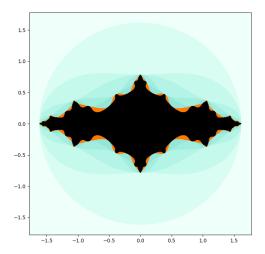


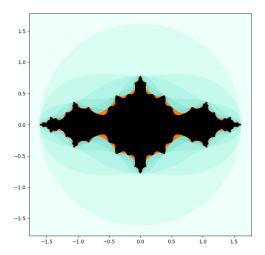


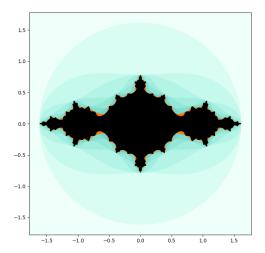


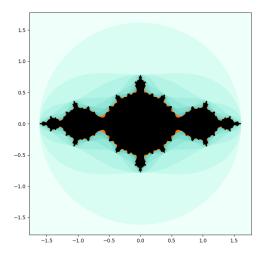


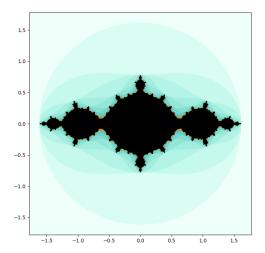


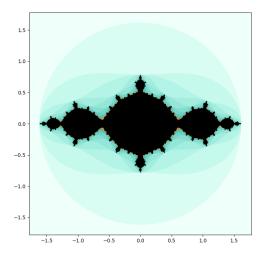


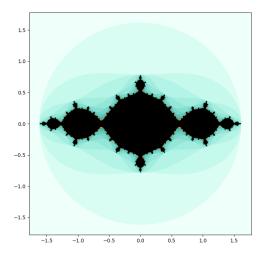






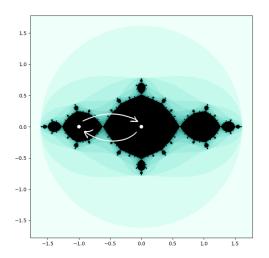




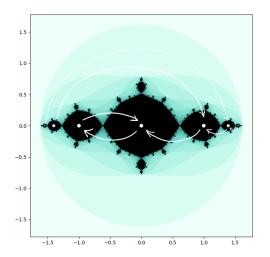




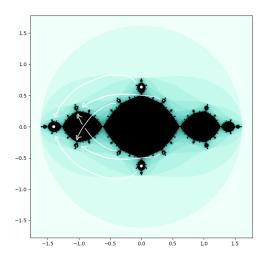
- The people who first studied complex quadratic maps gave fancy names to filled Julia sets they liked.
- This one is called the basilica.



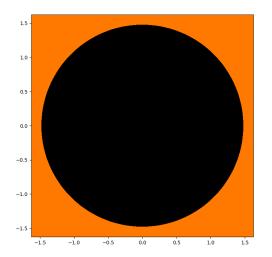
- The people who first studied complex quadratic maps gave fancy names to filled Julia sets they liked.
- This one is called the basilica.
- Each lobe contains an eventually periodic point.



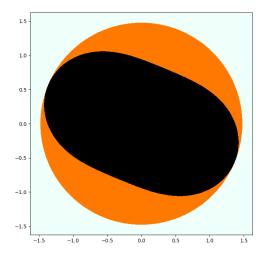
- The people who first studied complex quadratic maps gave fancy names to filled Julia sets they liked.
- This one is called the basilica.
- Each lobe contains an eventually periodic point.



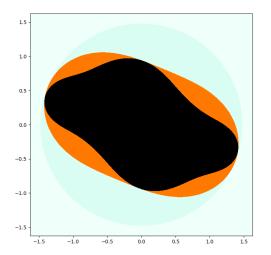
- The people who first studied complex quadratic maps gave fancy names to filled Julia sets they liked.
- This one is called the basilica.
- Each lobe contains an eventually periodic point.



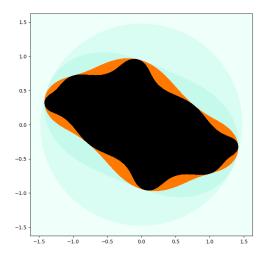
$$c = -0.5 + 0.5i$$



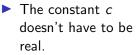
$$c = -0.5 + 0.5i$$

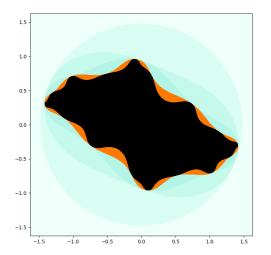


$$c = -0.5 + 0.5i$$

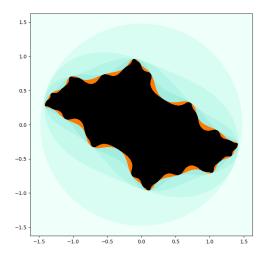


$$c = -0.5 + 0.5i$$

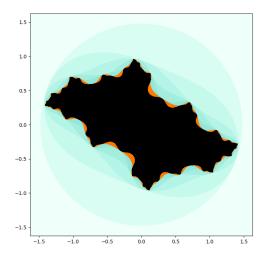




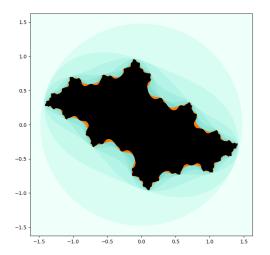
$$c = -0.5 + 0.5i$$



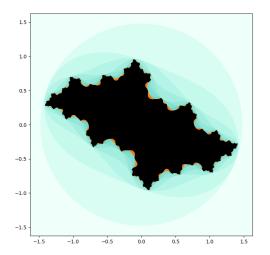
$$c = -0.5 + 0.5i$$



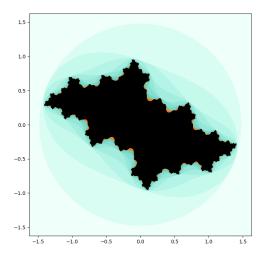
$$c = -0.5 + 0.5i$$



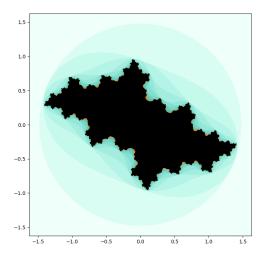
$$c = -0.5 + 0.5i$$



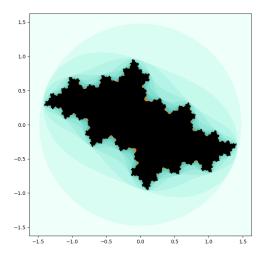
$$c = -0.5 + 0.5i$$



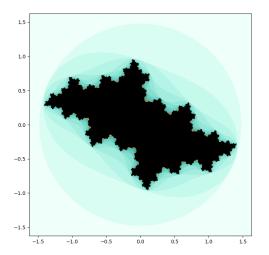
$$c = -0.5 + 0.5i$$



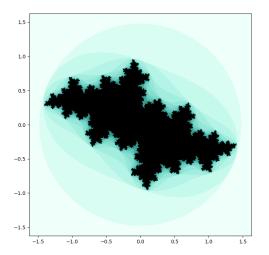
$$c = -0.5 + 0.5i$$



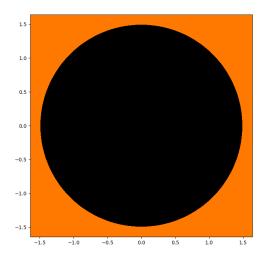
$$c = -0.5 + 0.5i$$



$$c = -0.5 + 0.5i$$



$$c = -0.5 + 0.5i$$



c = -0.512511498387847167 + 0.521295573094847167*i*

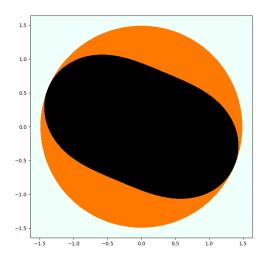
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_



c = -0.512511498387847167 + 0.521295573094847167*i*

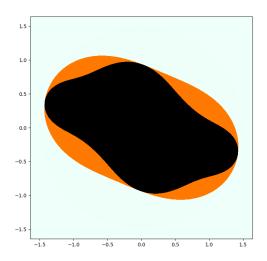
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_



c = -0.512511498387847167 + 0.521295573094847167*i*

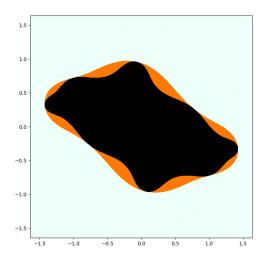
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_



c = -0.512511498387847167 + 0.521295573094847167*i*

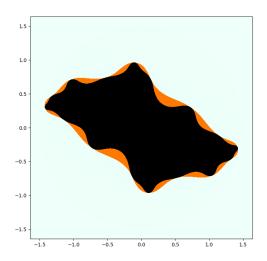
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_



c = -0.512511498387847167 + 0.521295573094847167*i*

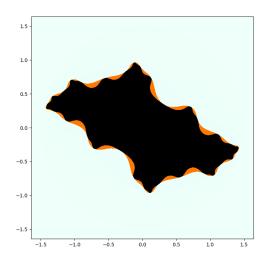
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_



c = -0.512511498387847167 + 0.521295573094847167*i*

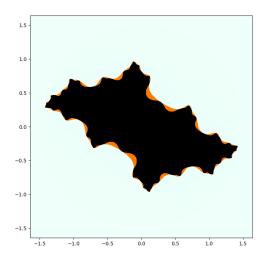
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_



c = -0.512511498387847167 + 0.521295573094847167*i*

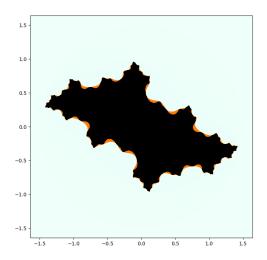
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_



c = -0.512511498387847167 + 0.521295573094847167*i*

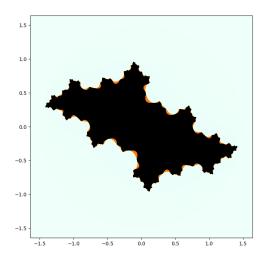
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_



c = -0.512511498387847167 + 0.521295573094847167*i*

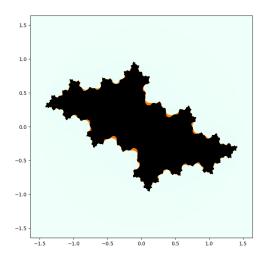
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_



c = -0.512511498387847167 + 0.521295573094847167*i*

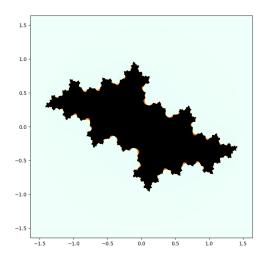
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_



c = -0.512511498387847167 + 0.521295573094847167*i*

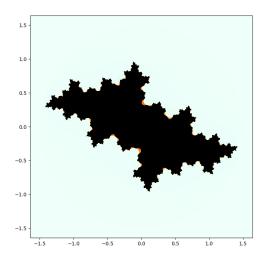
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_



c = -0.512511498387847167 + 0.521295573094847167*i*

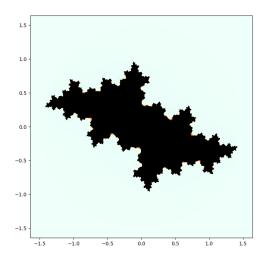
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_



c = -0.512511498387847167 + 0.521295573094847167*i*

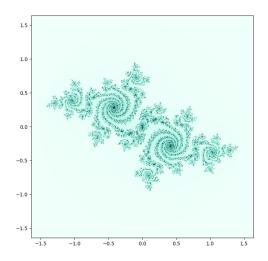
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

https://en.wikipedia.org/wiki/

Julia_set#/media/File:

Julia_set,_plotted_with_



c = -0.512511498387847167 + 0.521295573094847167*i*

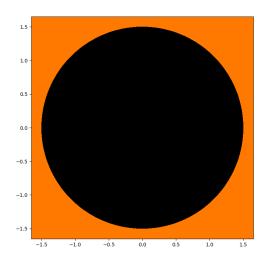
Tiny changes in c can have a big effect on the filled Julia set.

Source: Martin Doege

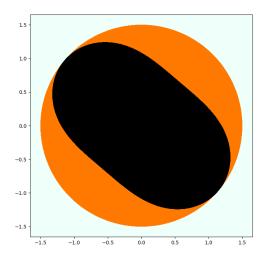
https://en.wikipedia.org/wiki/

Julia_set#/media/File:

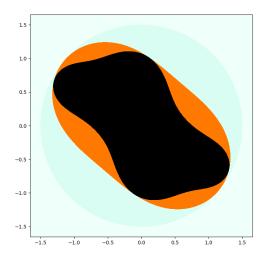
Julia_set,_plotted_with_



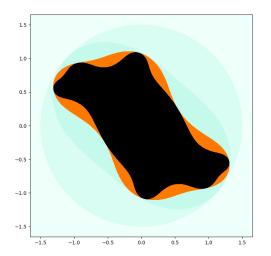
- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4



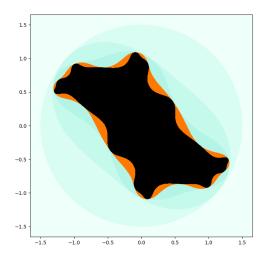
- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4



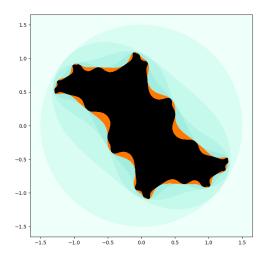
- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4



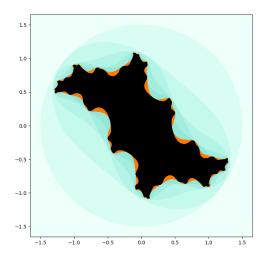
- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4



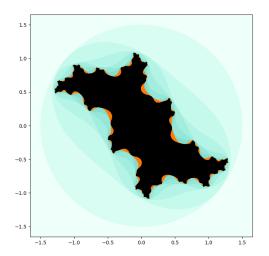
- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4



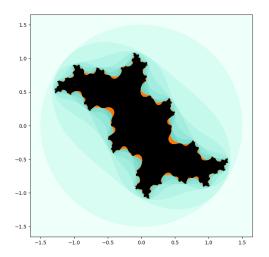
- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4



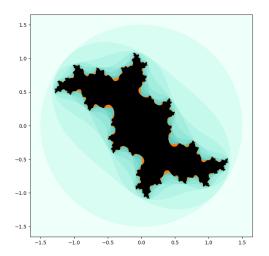
- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4



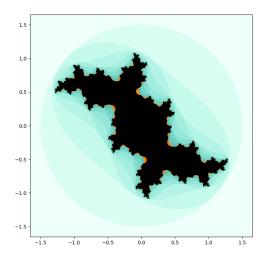
- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4



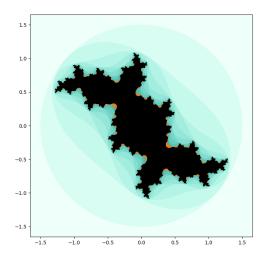
- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4



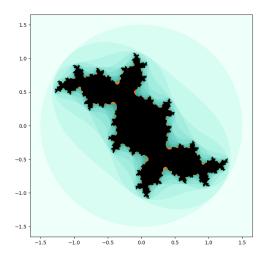
- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4



- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4



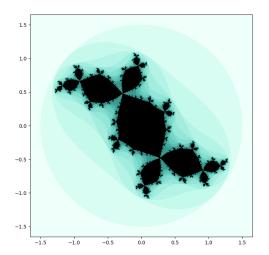
- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4



- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4

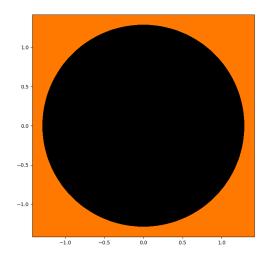


- Playing with c, you can find all sorts of cool shapes.
- This kind is called a Douady rabbit.
- Source: An Introduction to Chaotic Dynamical Systems, plates 3–4



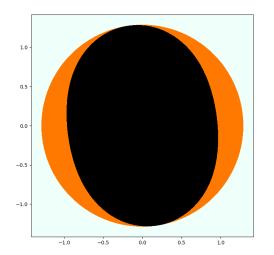
c = -0.122 + 0.745i.

It's named after Adrien Douady, one of the first people to study the dynamics of complex quadratic maps.



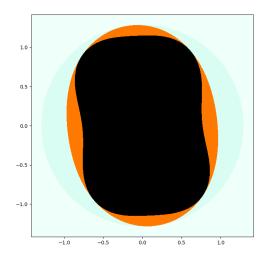
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



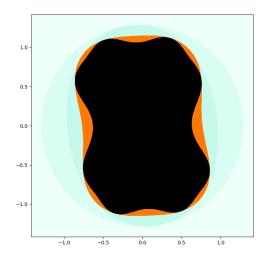
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



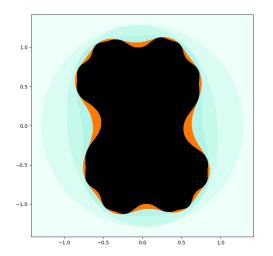
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



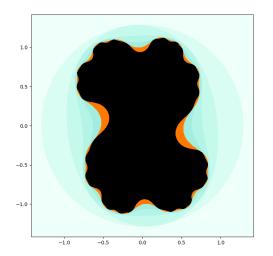
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



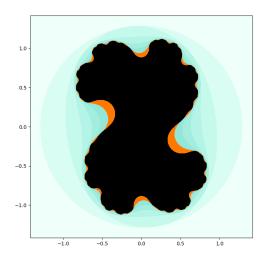
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



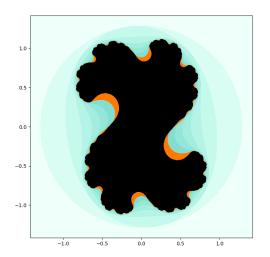
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



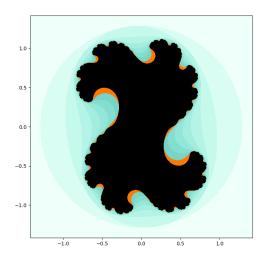
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



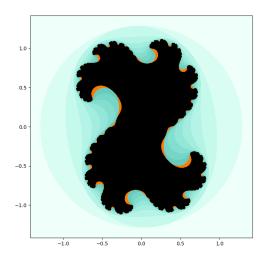
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



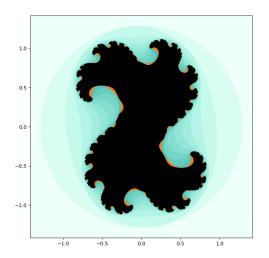
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



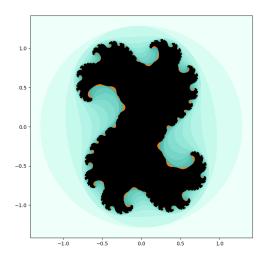
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



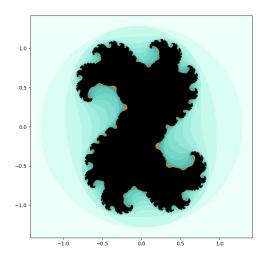
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



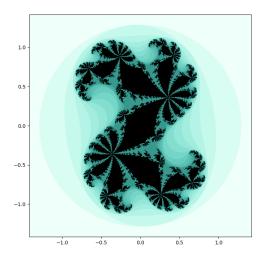
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



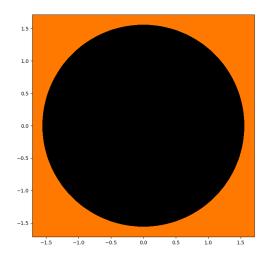
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



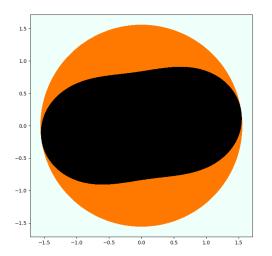
c = 0.360284 + 0.100376i.

 Devaney calls this kind is called a dragon.



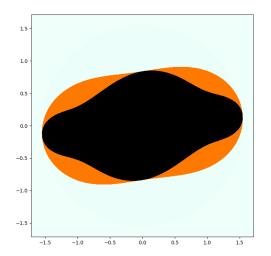
$$c = -0.835 - 0.2321i$$

 This one starts out looking nice and fat.

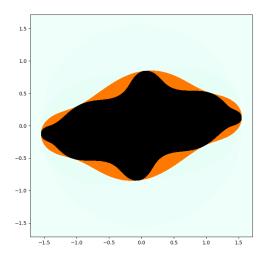


$$c = -0.835 - 0.2321i$$

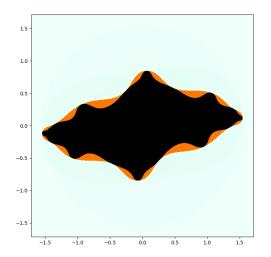
 This one starts out looking nice and fat.



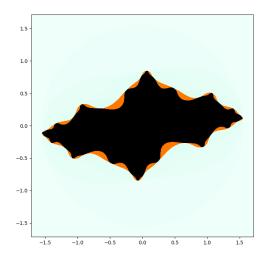
$$c = -0.835 - 0.2321i$$



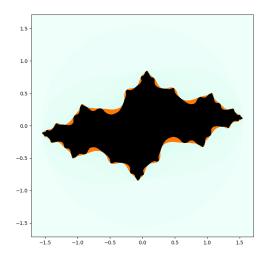
$$c = -0.835 - 0.2321i$$



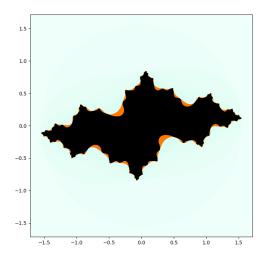
$$c = -0.835 - 0.2321i$$



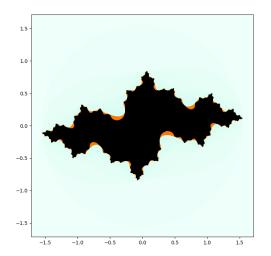
$$c = -0.835 - 0.2321i$$



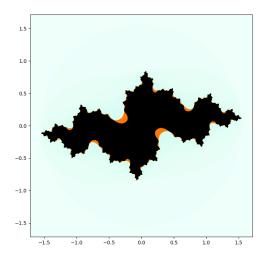
$$c = -0.835 - 0.2321i$$



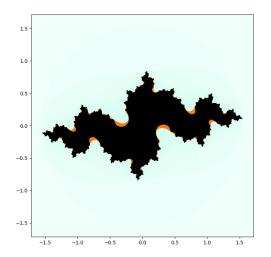
$$c = -0.835 - 0.2321i$$



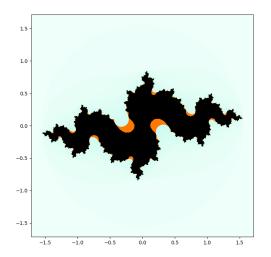
$$c = -0.835 - 0.2321i$$



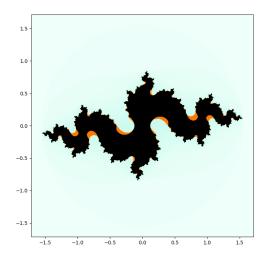
$$c = -0.835 - 0.2321i$$



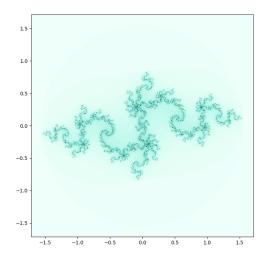
$$c = -0.835 - 0.2321i$$



$$c = -0.835 - 0.2321i$$

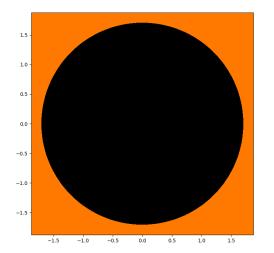


$$c = -0.835 - 0.2321i$$

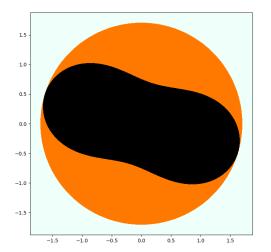


$$c = -0.835 - 0.2321i$$

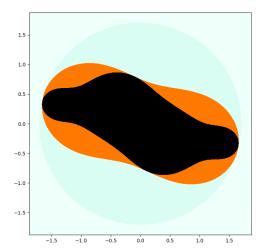
- This one starts out looking nice and fat.
- But those early approximations are deceptive!
- Source: Bernardo Galvão de Sousa's MAT 335 notes.



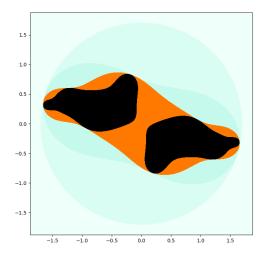
$$c = -1 + \frac{2}{3}i$$



$$c = -1 + \frac{2}{3}i$$

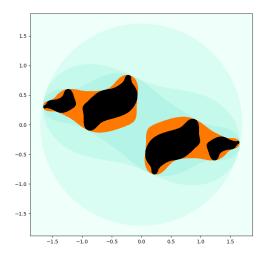


$$c = -1 + \frac{2}{3}i$$



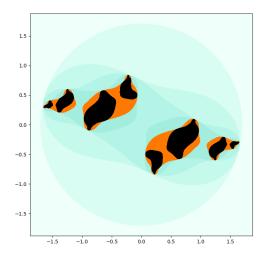
$$c = -1 + \frac{2}{3}i$$

Once we cut out L₀,..., L₃, we're left with two separate pieces.



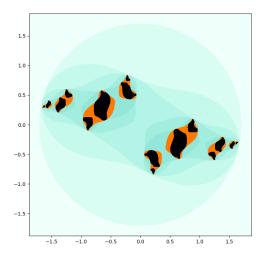
$$c = -1 + \frac{2}{3}i$$

- Once we cut out L₀,..., L₃, we're left with two separate pieces.
- The next cut splits each piece in two.



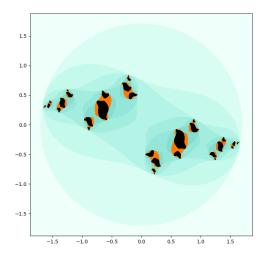
$$c = -1 + \frac{2}{3}i$$

- Once we cut out L₀,..., L₃, we're left with two separate pieces.
- The next cut splits each piece in two.
- The next cut does the same thing.



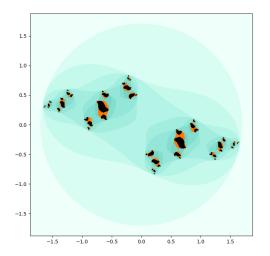
$$c = -1 + \frac{2}{3}i$$

- Once we cut out L₀,..., L₃, we're left with two separate pieces.
- The next cut splits each piece in two.
- The next cut does the same thing.



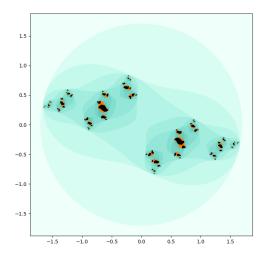
$$c = -1 + \frac{2}{3}i$$

- Once we cut out L₀,..., L₃, we're left with two separate pieces.
- The next cut splits each piece in two.
- The next cut does the same thing.



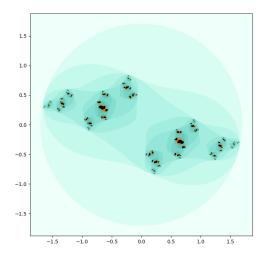
$$c = -1 + \frac{2}{3}i$$

- Once we cut out L₀,..., L₃, we're left with two separate pieces.
- The next cut splits each piece in two.
- The next cut does the same thing.



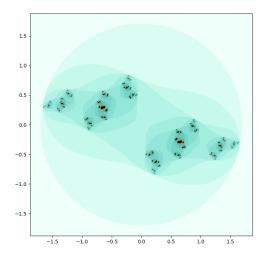
$$c = -1 + \frac{2}{3}i$$

- Once we cut out L₀,..., L₃, we're left with two separate pieces.
- The next cut splits each piece in two.
- The next cut does the same thing.



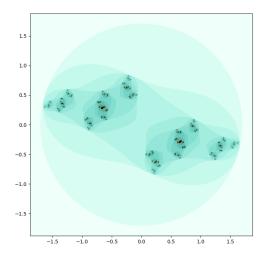
$$c = -1 + \frac{2}{3}i$$

- Once we cut out L₀,..., L₃, we're left with two separate pieces.
- The next cut splits each piece in two.
- The next cut does the same thing.



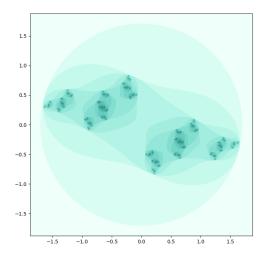
$$c = -1 + \frac{2}{3}i$$

- Once we cut out L₀,..., L₃, we're left with two separate pieces.
- The next cut splits each piece in two.
- The next cut does the same thing.



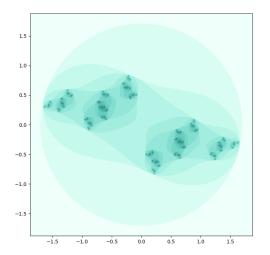
$$c = -1 + \frac{2}{3}i$$

- Once we cut out L₀,..., L₃, we're left with two separate pieces.
- The next cut splits each piece in two.
- The next cut does the same thing.



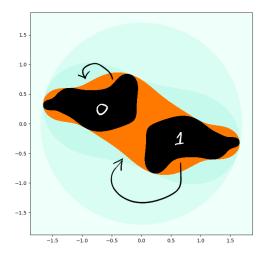
$$c = -1 + \frac{2}{3}i$$

- Once we cut out L₀,..., L₃, we're left with two separate pieces.
- The next cut splits each piece in two.
- The next cut does the same thing.



$$c = -1 + \frac{2}{3}i$$

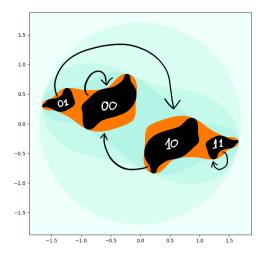
- In the end, the filled Julia set breaks down into infinitely many separate points.
- This kind of Julia set is called *Cantor dust*.



$$c = -1 + \frac{2}{3}i$$

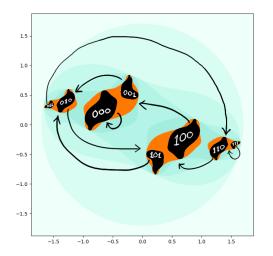
 After the first split, we get two "1st-level pieces."

▶ Call them I_0 and I_1 .



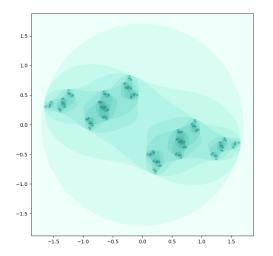
$$c = -1 + \frac{2}{3}i$$

- After the first split, we get two "1st-level pieces."
- Call them I_0 and I_1 .
- Label the each 2nd-level piece according to where it's sent by Q_c, like we did before.



$$c = -1 + \frac{2}{3}i$$

- After the first split, we get two "1st-level pieces."
- Call them I_0 and I_1 .
- Label the each 2nd-level piece according to where it's sent by Q_c, like we did before.
- Same for each 3rd-level piece.



$$c = -1 + \frac{2}{3}i$$

 We can define an itinerary map

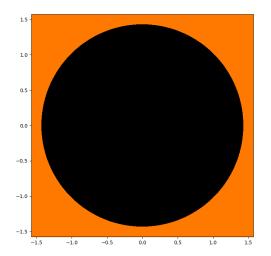
$$\tau\colon K_{c}\to \mathbf{2}^{\mathbb{N}}.$$

It's a conjugacy from

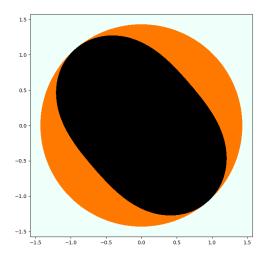
$$Q_c \colon K_c \to K_c.$$

to the shift map.

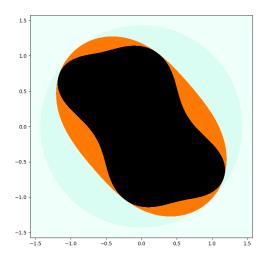
 This works whenever K_c is Cantor dust.



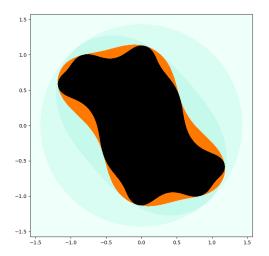
$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$



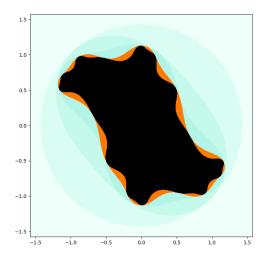
$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$



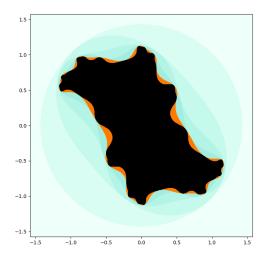
$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$



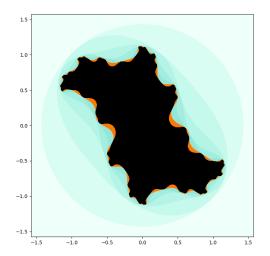
$$egin{aligned} c &= rac{\mathrm{e}^{\mathrm{i} heta}}{2}(1-rac{\mathrm{e}^{\mathrm{i} heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$



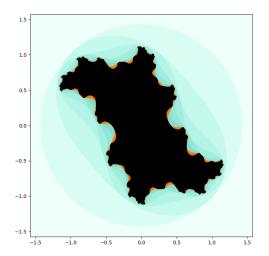
$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$



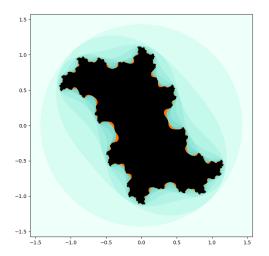
$$egin{aligned} c &= rac{\mathrm{e}^{\mathrm{i} heta}}{2}(1-rac{\mathrm{e}^{\mathrm{i} heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$



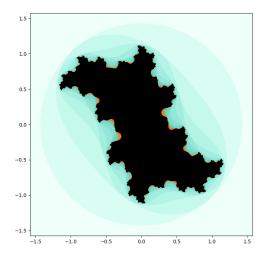
$$egin{aligned} c &= rac{\mathrm{e}^{\mathrm{i} heta}}{2}(1-rac{\mathrm{e}^{\mathrm{i} heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$



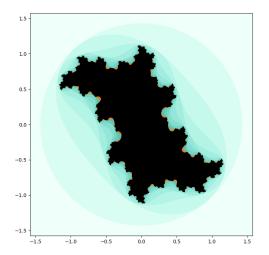
$$egin{aligned} c &= rac{\mathrm{e}^{\mathrm{i} heta}}{2}(1-rac{\mathrm{e}^{\mathrm{i} heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$



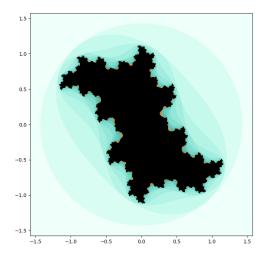
$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$



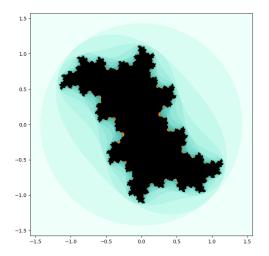
$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$



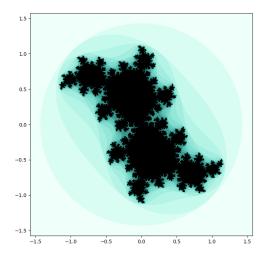
$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$



$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$

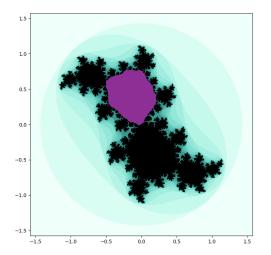


$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$



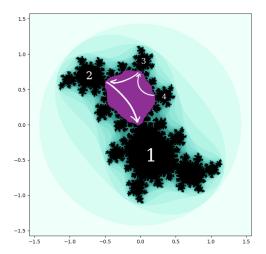
$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$

- This Julia set doesn't quite break into separate pieces.
- Neighboring lobes touch at a single point.



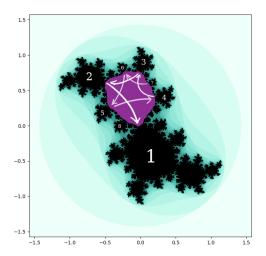
$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$

- This Julia set doesn't quite break into separate pieces.
- Neighboring lobes touch at a single point.
- One lobe maps to itself. It's called the Siegel disk.



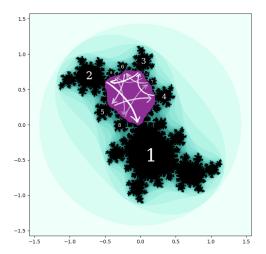
$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$

- On the boundary of the Siegel disk, Q_c is conjugate to R_θ.
- The lobe labeled n maps to the Siegel disk after n steps.



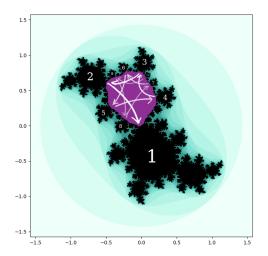
$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$

- On the boundary of the Siegel disk, Q_c is conjugate to R_θ.
- The lobe labeled n maps to the Siegel disk after n steps.



$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$

- On the boundary of the Siegel disk, Q_c is conjugate to R_θ.
- The lobe labeled n maps to the Siegel disk after n steps.

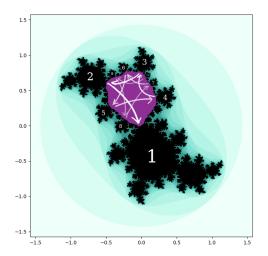


$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$

- On the boundary of the Siegel disk, Q_c is conjugate to R_θ.
- The lobe labeled n maps to the Siegel disk after n steps.
- I'll this kind of Julia set a "Siegel cactus."

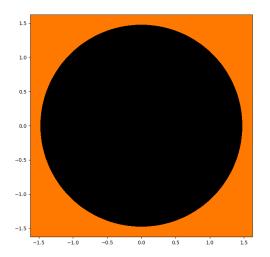
$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$

- On the boundary of the Siegel disk, Q_c is conjugate to R_θ.
- The lobe labeled n maps to the Siegel disk after n steps.
- I'll this kind of Julia set a "Siegel cactus."



$$egin{aligned} c &= rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2}) \ heta &= 2\pi(\sqrt{5/3}-1) \end{aligned}$$

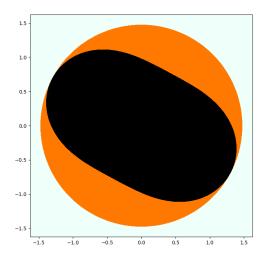
- On the boundary of the Siegel disk, Q_c is conjugate to R_θ.
- The lobe labeled n maps to the Siegel disk after n steps.
- I'll this kind of Julia set a "Siegel cactus."



$$c = rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta = \pi(3-\sqrt{5})$

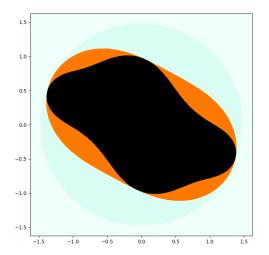
- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.



$$c = rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta = \pi(3-\sqrt{5})$

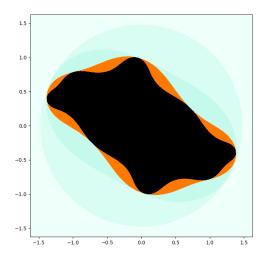
- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.



$$c = rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta = \pi(3-\sqrt{5})$

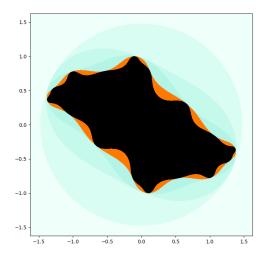
- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.



$$c=rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta=\pi(3-\sqrt{5})$

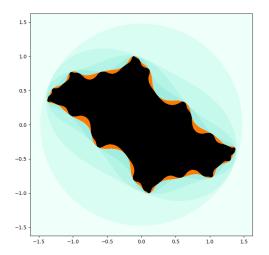
- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.



$$c = rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta = \pi(3-\sqrt{5})$

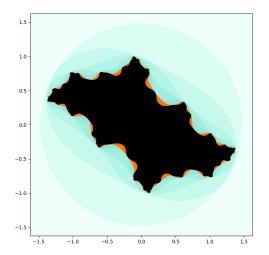
- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.



$$c=rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta=\pi(3-\sqrt{5})$

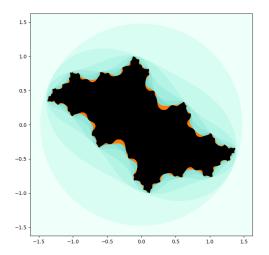
- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.



$$c=rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta=\pi(3-\sqrt{5})$

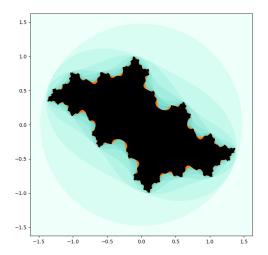
- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.



$$c = rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta = \pi(3-\sqrt{5})$

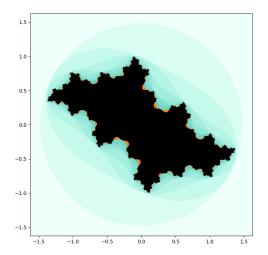
- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.



$$c = rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta = \pi(3-\sqrt{5})$

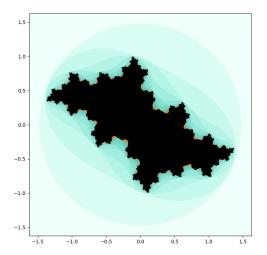
- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.



$$c = rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta = \pi(3-\sqrt{5})$

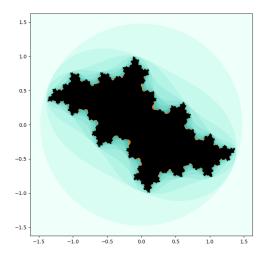
- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.



$$c = rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta = \pi(3-\sqrt{5})$

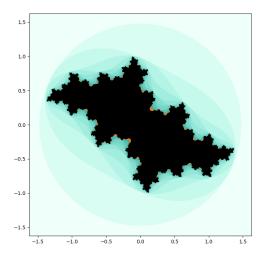
- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.



$$c = rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta = \pi(3-\sqrt{5})$

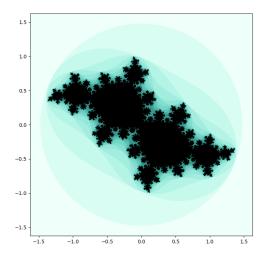
- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.



$$c = rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta = \pi(3-\sqrt{5})$

- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.



$$c = rac{e^{i heta}}{2}(1-rac{e^{i heta}}{2})$$

 $heta = \pi(3-\sqrt{5})$

- Here's another Siegel cactus.
- The formula for c shown above makes K_c a Siegel cactus whenever θ/2π is irrational.