For term test 2
March 12

Chaos, fractals, and dynamics
MAT 335, Winter 2019

Attraction and repulsion

Say p is a fixed point of a dynamical map F.

- A basin of attraction for p is an open ball U with the following properties.
$\diamond U$ contains p.
\diamond Every orbit starting in U stays in U forever.
\diamond Every orbit starting in U limits to p.
(The second property is equivalent to the property that $F(U) \subset U$, using our shorthand from class.)
- A region of repulsion for p is an open ball U with the following properties.
$\diamond U$ contains p.
\diamond Every orbit starting in U eventually leaves U, unless it starts at p. (It only has to leave once; it can come back later.)

Continuity

Formal definition. Consider a function $\psi: W \rightarrow X$. Pick any point $w \in W$. The function ψ is continuous at w if we can keep the output of ψ within any "target" open ball around $\psi(w)$ by keeping its input within a small enough open ball around w.

The function ψ is continuous if it's continuous at every point in W.

Semiconjugacy

The function $\psi: W \rightarrow X$ is a semiconjugacy from the dynamical map $E: W \rightarrow W$ to the dynamical map $F: X \rightarrow X$ if it has the following properties. ${ }^{1}$

- We can find out what F does to a point by looking at what E does to its label. In symbols,

$$
F(\psi(w))=\psi(E(w)) \quad \text { for all labels } w \in W
$$

In a picture,

[^0]- Every point in X has a label. In other words, every point $x \in X$ can be expressed as $\psi(w)$ for some $w \in W$. A function ψ with this property is called onto.
- Each point in X has a limited number of labels. Specifically, we can fix a maximum m and say that that each point in X has at most m labels in W. A function ψ with this property is called at most m-to-one.
- The function ψ is continuous.

Fact. If ψ is a semiconjugacy from $E: W \rightarrow W$ to $F: X \rightarrow X$, it's also a semiconjugacy from E^{n} to F^{n}, for any number n of iterations.

The binary representation

The binary representation of angles is a function $\phi: \mathbf{2}^{\mathbb{N}} \rightarrow \mathbb{T}$. Using $w_{1}, w_{2}, w_{3}, w_{4}, \ldots$ to denote the digits of a point $w \in \mathbf{2}^{\mathbb{N}}$, we can write

$$
\phi(w) \equiv 2 \pi\left(\frac{w_{1}}{2^{1}}+\frac{w_{2}}{2^{2}}+\frac{w_{3}}{2^{3}}+\frac{w_{4}}{2^{4}}+\ldots\right) .
$$

Fact. The binary representation is a semiconjugacy from the shift map $S: \mathbf{2}^{\mathbb{N}} \rightarrow \mathbf{2}^{\mathbb{N}}$ to the doubling map $D: \mathbb{T} \rightarrow \mathbb{T}$.

Fact. For any $t \in(-1,1)$,

$$
1+t+t^{2}+t^{3}+t^{4}+\ldots=\frac{1}{1-t}
$$

[^0]: ${ }^{1}$ The version handed out during the test had a typo: E and F were switched. I announced a correction.

