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Chaos, fractals, and dynamics
MAT 335, Winter 2019

Show your calculations, and explain your reasoning. Your goal is for the graders to under-
stand how you got your answers, and to be convinced that your reasoning makes sense.

1 Standardizing quadratic maps

In week 1, when we first met the dynamical maps Qu(x) = x2 + u on the state space
R, I introduced them as the “standard quadratic maps.” Now that we’ve learned about
semiconjugacy, I can explain why I chose that name.

a. Find a semiconjugacy from the quadratic map F (x) = x2 + 6x + 5 to the standard
quadratic map Q−1. (Corrected: the previous version had 3 as the coefficient of x.)

hint: Look for constants a, b that make ψ(x) = ax+b a semiconjugacy from F to Q−1.
You should make sure you found a semiconjugacy by checking the four properties a
semiconjugacy needs to have. You can take it as given that ψ(x) = ax+b is continuous
for any choice of a and b, but you should think about why this is true.

b. Find a semiconjugacy from the quadratic map G(x) = 2x2− 3 to a standard quadratic
map Qu.

hint: Look for constants a, b, u that make ψ(x) = ax+ b a semiconjugacy from G to
Qu.

c. Show that every quadratic map P (x) = Ax2+2Bx+C, with A 6= 0, is semiconjugate to
a standard quadratic map Qu. Write formulas for the semiconjugacy and the constant
u in terms of A, B, C.

Each of the semiconjugacies you’ll find in this problem has a special property: it’s invertible,
and its inverse is a semiconjugacy too. A semiconjugacy that goes both ways like this is
called a conjugacy. If two dynamical systems are connected by a conjugacy, they’re the same
for all practical purposes. So, this problem demonstrates that every quadratic map is the
same, for all practical purposes, as one of our standard quadratic maps.

2 An itinerary function

Let’s revisit a dynamical system we mentioned briefly in the first week of the course: the
rotation map R2 : T → T, defined by the formula R2(θ) ≡ θ + 2. The points in T whose
orbits never hit 0 or π form a subset Λ ⊂ T. Let’s define a function τ : Λ → 2N in the
following way.

the nth digit of τ(θ) is

{
0 if Rn

2 (θ) ∈ (0, π)

1 if Rn
2 (θ) ∈ (π, 2π)

Let’s call the starting digit of a sequence the 0th digit.
You can find the sequence τ(θ) by writing down the orbit of θ and then noting whether

each point on the orbit is in the top half or the bottom half of the unit circle. For example,
here’s a calculation of the first five digits of τ(1).
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n 0 1 2 3 4
Rn

2 (1) 1.000. . . 3.000. . . 5.000. . . 0.716. . . 2.716. . .
nth digit of τ(1) 0 0 1 0 0

Intuitively, the sequence τ(θ) tells you when the orbit of θ visits the top and bottom
halves of the unit circle. A function that gives this kind of information is called an itinerary
function. Itinerary functions are helpful for understanding the orbits of many dynamical
systems, including quadratic maps.

Surprisingly, the function τ is continuous! This problem will walk you through an ar-
gument that τ is continuous at 1. To understand what you’re doing, you should review
Section 2 of the week 5 notes.

a. Use a calculator to find the first twenty digits of τ(1). (The table above gives you the
first five digits for free.)

b. Find a radius r ∈ (0,∞) small enough that τ sends every point in B1(r) into the target
ball Bτ(1)(2

0). We’ll use the shorthand τ(B1(r)) ⊂ Bτ(1)(2
0) to express this condition.

c. Find a radius r ∈ (0,∞) small enough that τ(B1(r)) ⊂ Bτ(1)(2
−1).

d. Find a radius r ∈ (0,∞) small enough that τ(B1(r)) ⊂ Bτ(1)(2
−2).

e. Convince me that if I gave you a whole number k ≥ 0, you could find a radius r ∈ (0,∞)
small enough that τ(B1(r)) ⊂ Bτ(1)(2

−k). A good way to do this is to describe a step-
by-step procedure you would use to find a value of r that works.

In each of the parts b, c, and d, you need to convince me that your value of r works. This
can be done with a short calculation.
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