
Homework 3
Due on Crowdmark
March 4, 11 a.m.

Chaos, fractals, and dynamics
MAT 335, Winter 2019

Show your calculations, and explain your reasoning. Your goal is for the graders to un-
derstand how you got your answers, and to be convinced that your reasoning makes sense.

Marking guide

For each problem, in the “Solution” heading, I describe how to split the problem into gradable
pieces, and how many points each piece is worth. Give the work for each gradable piece 0/3,
1/3, 2/3, or 3/3 of the points available, according to the guidelines below. Record your mark
for each piece on the page; I recommend using the built in 8 and 4 symbols in Crowdmark
as shown.

8 0/3 Does not show much understanding of what’s going on.

4 1/3 Shows a basic understanding of what’s going on, but doesn’t get very far
down any promising path to a solution.

44 2/3 Gets pretty far down a promising path to a solution, but doesn’t get all
the way there, due to a conceptual error, major computation errors, or significant
omissions.

444 3/3 Gets basically all the way to a solution, with only superficial errors or
omissions.

1 Standardizing quadratic maps

In week 1, when we first met the dynamical maps Qu(x) = x2 + u on the state space
R, I introduced them as the “standard quadratic maps.” Now that we’ve learned about
semiconjugacy, I can explain why I chose that name.

a. Find a semiconjugacy from the quadratic map F (x) = x2 + 6x + 5 to the standard
quadratic map Q−1. (Corrected: the previous version had 3 as the coefficient of x.)

hint: Look for constants a, b that make ψ(x) = ax+b a semiconjugacy from F to Q−1.
You should make sure you found a semiconjugacy by checking the four properties a
semiconjugacy needs to have. You can take it as given that ψ(x) = ax+b is continuous
for any choice of a and b, but you should think about why this is true.

b. Find a semiconjugacy from the quadratic map G(x) = 2x2− 3 to a standard quadratic
map Qu.

hint: Look for constants a, b, u that make ψ(x) = ax+ b a semiconjugacy from G to
Qu.
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c. Show that every quadratic map P (x) = Ax2+2Bx+C, with A 6= 0, is semiconjugate to
a standard quadratic map Qu. Write formulas for the semiconjugacy and the constant
u in terms of A, B, C.

Each of the semiconjugacies you’ll find in this problem has a special property: it’s invertible,
and its inverse is a semiconjugacy too. A semiconjugacy that goes both ways like this is
called a conjugacy. If two dynamical systems are connected by a conjugacy, they’re the same
for all practical purposes. So, this problem demonstrates that every quadratic map is the
same, for all practical purposes, as one of our standard quadratic maps.

Solution (3 points for a; 3 points for b; 6 points for c)

a. The function ψ(x) = x+ 3 is continuous, onto, and one-to-one, so it’s a semiconjugacy
from F to Q−1 as long as the functions ψ ◦ F and Q−1 ◦ ψ are the same. Using the
formulas for F , Q−1, and ψ, we see that

Q−1(ψ(x)) = (x+ 3)2 − 1

= (x2 + 6x+ 9)− 1

= x2 + 6x+ 8,

while

ψ(F (x)) = F (x) + 3

= x2 + 6x+ 8.

Hence, ψ(x) = x+ 3 is indeed a semiconjugacy from F to Q−1.

b.

c. The function ψ(x) = 2x is continuous, onto, and one-to-one, so it’s a semiconjugacy
from G to Qu as long as the functions ψ ◦ G and Qu ◦ ψ are the same. Using the
formulas for G, Qu, and ψ, we see that

Qu(ψ(x)) = (2x)2 + u

= 4x2 + u,

while

ψ(G(x)) = 2G(x)

= 4x2 − 6.

The formulas for ψ ◦ G and Qu ◦ ψ match when u = −6. Hence, ψ(x) = 2x is a
semiconjugacy from G to Q−6.

d. Let’s look for constants a, b, u that make ψ(x) = ax + b a semiconjugacy from P to
Qu. There are four properties we need ψ to have.
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• We need ψ to be continuous. This is true for any choice of a, b.

• We need ψ to be onto. This is true as long as a 6= 0.

• We need ψ to be few-to-one. When a 6= 0, the function ψ is one-to-one.

• We need the functions ψ ◦P and Qu ◦ψ have to be the same. Using the formulas
for P , Qu, and ψ, we see that

Qu(ψ(x)) = (ax+ b)2 + u

= (a2)x2 + (2ab)x+ (b2 + u),

while

ψ(P (x)) = a(Ax2 + 2Bx+ C) + b

= (aA)x2 + (2aB)x+ (aC + b),

so we need

a2 = aA

2ab = 2aB

b2 + u = aC + b.

Recalling that a can’t be zero, we can use the first two equations to express a and
b in terms of A and B.

a = A

b = B

Rearranging the third equation then gives us u in terms of A, B, C.

u = aC + b(1− b)
= AC +B(1−B).

2 An itinerary function

Let’s revisit a dynamical system we mentioned briefly in the first week of the course: the
rotation map R2 : T → T, defined by the formula R2(θ) ≡ θ + 2. The points in T whose
orbits never hit 0 or π form a subset Λ ⊂ T. Let’s define a function τ : Λ → 2N in the
following way.

the nth digit of τ(θ) is

{
0 if Rn

2 (θ) ∈ (0, π)

1 if Rn
2 (θ) ∈ (π, 2π)

Let’s call the starting digit of a sequence the 0th digit.
You can find the sequence τ(θ) by writing down the orbit of θ and then noting whether

each point on the orbit is in the top half or the bottom half of the unit circle. For example,
here’s a calculation of the first five digits of τ(1).
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n 0 1 2 3 4
Rn

2 (1) 1.000. . . 3.000. . . 5.000. . . 0.716. . . 2.716. . .
nth digit of τ(1) 0 0 1 0 0

Intuitively, the sequence τ(θ) tells you when the orbit of θ visits the top and bottom
halves of the unit circle. A function that gives this kind of information is called an itinerary
function. Itinerary functions are helpful for understanding the orbits of many dynamical
systems, including quadratic maps.

Surprisingly, the function τ is continuous! This problem will walk you through an ar-
gument that τ is continuous at 1. To understand what you’re doing, you should review
Section 2 of the week 5 notes.

a. Use a calculator to find the first twenty digits of τ(1). (The table above gives you the
first five digits for free.)

b. Find a radius r ∈ (0,∞) small enough that τ sends every point in B1(r) into the target
ball Bτ(1)(2

0). We’ll use the shorthand τ(B1(r)) ⊂ Bτ(1)(2
0) to express this condition.

c. Find a radius r ∈ (0,∞) small enough that τ(B1(r)) ⊂ Bτ(1)(2
−1).

d. Find a radius r ∈ (0,∞) small enough that τ(B1(r)) ⊂ Bτ(1)(2
−2).

e. Convince me that if I gave you a whole number k ≥ 0, you could find a radius r ∈ (0,∞)
small enough that τ(B1(r)) ⊂ Bτ(1)(2

−k). A good way to do this is to describe a step-
by-step procedure you would use to find a value of r that works.

In each of the parts b, c, and d, you need to convince me that your value of r works. This
can be done with a short calculation.

Solution (3 points for each part)

a. The first twenty digits of τ(1) are 00100100100110110110.

b. The ball Bτ(1)(2
0) is the set of sequences that match τ(1) at the 0th digit. That means

we want every point in B1(r) to have an itinerary starting with 0. The 0th digit of
τ(θ) is 0 if and only if θ is in (0, π). The ball B1(1) fits inside the interval (0, π), so we
can pick r = 1.

c. The ball Bτ(1)(2
−1) is the set of sequences that match τ(1) at the 0th through 1st

digits. That means we want every point in B1(r) to have an itinerary starting with
00. We know from the previous part that the 0th digit of τ(θ) is 0 as long as θ is in
B1(1). The 1st digit of τ(θ) is 0 if and only if

R2(θ) ∈ (0, π)

θ + 2 ∈ (0, π)

θ ∈ (−2, π − 2)

= (−2, 1.141 . . .).

The ball B1(0.14) fits inside both the ball B1(1) and the interval (−2, π − 2), so we
can pick r = 0.14.
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d. The ball Bτ(1)(2
−2) is the set of sequences that match τ(1) at the 0th through 2nd

digits. That means we want every point in B1(r) to have an itinerary starting with
001. We know from the previous parts that the 0th through 1st digits of τ(θ) are 00

as long as θ is in B1(0.14). The 2nd digit of τ(θ) is 1 if and only if

R2
2(θ) ∈ (π, 2π)

θ + 4 ∈ (π, π)

θ ∈ (π − 4, 2π − 4)

= (−0.858 . . . , 2.283 . . .).

The ball B1(0.14) fits inside the interval (π− 4, 2π− 4), so we can pick r = 0.14 again.

e. Let’s say we want to constrain θ ∈ Λ so that τ(θ) will be in Bτ(1)(2
−k). That means

we want τ(θ) to match τ(1) at the 0th through kth digits.

Since 1 is in Λ, none of the points 1, R2(1), R2
2(1), . . . , Rk

2(1) are 0 or π. We can therefore
find a radius r ∈ (0,∞) small enough that the ballsB1(r), BR2(1), BR2

2(1)
(r), . . . , BRk

2(1)
(r)

avoid both 0 and π.1 To ensure that τ(θ) matches τ(1) at the 0th through kth digits,
it’s enough to ensure that Rn

2 (θ) is in BRn
2 (1)

(r) for each n ∈ {1, . . . , k}. Because of the
way R2 moves open balls, this is equivalent to ensuring that θ is in B1(r). We can now
see, reasoning in the other direction, that τ(θ) will match τ(1) at the 0th through kth
digits whenever θ is in B1(r). We’ve thus found a radius r ∈ (0,∞) small enough that
τ(B1(r)) ⊂ Bτ(1)(2

−k).

1Here’s a concrete way to do this, suggested by some students during in office hours. (Many thanks for
the suggestion! Let me know if you’d like to be credited by name.) For each n ∈ {0, . . . , k}, define rn as
min{d(Rn

2 (1), 0), d(Rn
2 (1), π)}. Then choose r to be min{r1, . . . , rk}.
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