
Homework 2
Due on Crowdmark
January 31, 11 a.m.

Chaos, fractals, and dynamics
MAT 335, Winter 2019

Show your calculations, and explain your reasoning. Your goal is for the graders to un-
derstand how you got your answers, and to be convinced that your reasoning makes sense.

Marking guide

For each problem, in the “Solution” heading, I describe how to split the problem into gradable
pieces, and how many points each piece is worth. Give the work for each gradable piece 0/3,
1/3, 2/3, or 3/3 of the points available, according to the guidelines below. Record your mark
for each piece on the page; I recommend using the built in 8 and 4 symbols in Crowdmark
as shown.

8 0/3 Does not show much understanding of what’s going on.

4 1/3 Shows a basic understanding of what’s going on, but doesn’t get very far
down any promising path to a solution.

44 2/3 Gets pretty far down a promising path to a solution, but doesn’t get all
the way there, due to a conceptual error, major computation errors, or significant
omissions.

444 3/3 Gets basically all the way to a solution, with only superficial errors or
omissions.

In problems 1 – 3, describe the orbits of the given dynamical system using graphical analysis,
and any other tools you’d like. Your description should include:

• Lists of all fixed points and periodic orbits.

• Classification of each fixed point and periodic orbit as attracting, repelling, or neither.

• A description of the long-term behavior of every orbit.

1 Graphical analysis of a quadratic map

The map F (x) = 1− x2 on the state space R.
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Solution

The fixed points of F are the solutions of the equation

F (x) = x

1− x2 = x

0 = x2 + x− 1.

Hence, the fixed points are p± = 1
2

(
−1±

√
5
)
. Observe that F ′(p±) = −1 ±

√
5, so |F ′|

is greater than one at both fixed points. Hence, both fixed points are repelling. [To use
the derivative test, you technically need to verify that F is continuously differentiable around
each fixed point, but it’s okay if students skip that.]

It’s apparent from the graph, and can be verified algebraically, that 0 and 1 form a
2-periodic orbit. Observe that

F 2(x) = 1− (1− x2)2

= 1− (1− 2x2 + x4)

= x2(2− x2),

so (F 2)′(0) = 0. Hence, the orbit of 0 and 1 is attracting.
Points that start in the interval (0, 1) stay there forever. Looking more closely at the

graph, and knowing that p+ is repelling, it’s pretty clear that every orbit starting in (0, 1)r
{p+} approaches the orbit of 0 and 1.
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Points in (p−, 0) hop to the right until they fall into the interval (0, 1). From there, they
either hit p+ or approach the orbit of 0 and 1.

Points in (1,−p−) fall into (p−, 0). From there, they either hit p+ or approach the orbit
of 0 and 1.

Points in (−∞, p−) hop to the left forever. Points in (−p−,∞) fall into (−∞, p−) and
then hop to the left forever.

Here’s an explicit description of the eventually fixed points [not required for full credit].
The point −p− eventually hits p−, and it’s the only point that does. The points

m1 = −
√

1− p+

m2 = −
√

1−m1 = −
√

1 +
√

1− p+

m3 = −
√

1−m2 = −
√

1 +

√
1 +

√
1− p+

...

eventually hit p+, and the points

`1 =
√

1−m1 =

√
1 +

√
1− p+

`2 =
√

1−m2 =

√
1 +

√
1 +

√
1− p+

`3 =
√

1−m3 =

√
1 +

√
1 +

√
1 +

√
1− p+

...

do the same. The first few points on the list are sketched below.
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2 Graphical analysis of a map on the circle

The map G(θ) = θ + π
4
(1 + cos θ) on the state space T.

hint: you can graph G on any [α, α+ 2π] by [α, α+ 2π] square. Choose a starting angle
α that makes the graph easy to read.

Solution

You can see algebraically that the only fixed point is π. Let’s graph G on a [−π, π] by [−π, π]
square.
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The graph lies entirely above the diagonal, meeting the diagonal at the fixed point π. As
a result, every orbit other than the one beginning at π steps steadily to the right, approaching
π. (This implies that there are no fixed or periodic points other than π.)

It follows that π is attracting, with the whole circle as a basin of attraction. (The whole
circle can be expressed as, say, the open ball around π with radius π + 1

100
.)

3 Graphical analysis of a rational map

The map

H(x) =
1− x
1 + x

on the state space “R with the point −1 removed.” You can refer to the state space in
symbols as Rr {−1}. (Corrected. The previous version gave R as the state space.)

hint: Sketch a cobweb plot to get a rough idea of what’s going on, but then verify
everything algebraically.

Solution

(The original version of the problem incorrectly gave R as the state space. Do not penalize
students who say the state space is R.)

5



The graph appears to by symmetric across the diagonal. This would imply that every point
returns to its original position when you H twice. To verify, let’s find a formula for H2:

H2(x) =
1−H(x)

1 +H(x)

=
1− 1−x

1+x

1 + 1−x
1+x

=
(1 + x)− (1− x)

(1 + x) + (1− x)

=
2x

2
= x.

We’ve now confirmed that H2(x) = x, so every point in Rr {−1} is 2-periodic for H.
We can see in the graph that there are two fixed points: one to the right of −1 and one

to the left. They’re the solutions of the equation

H(x) = x

1− x
1 + x

= x

1− x = x+ x2

0 = x2 + 2x− 1.

Hence, the fixed points are −1±
√

2. Every other point in Rr {−1} has minimum period 2.
The fact that every orbit is 2-periodic implies that that neither fixed point is attracting

or repelling. [This paragraph is tricky, so be lenient with the details.] To see why, let’s pick
any open ball U around p. I’ll argue that U is neither a basin of attraction or a region of
repulsion for p. Find a point x which is not fixed, but is close enough to p that both x and
H(x) are in U . Since x is 2-periodic, its orbit never leaves U , so U can’t be a region of
repulsion for p. On the other hand, since x is periodic but not fixed, its orbit doesn’t have
a limit, so U can’t be a basin of attraction for p.

4 Sweeping the other way

Consider the following dynamical system.

State space: 2N.

Dynamical map: Each 0 that comes after a 1 turns into a 1.

Let’s call this map B. As a demonstration, here’s what B does to one point in 2N.

w = 00110001101110001001011 . . .

B(w) = 00111001111111001101111 . . .

The changed digits are underlined.
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a. Describe all the fixed points of B.

b. Classify each fixed point as attracting, repelling, or neither.

Solution

Sorry about the notation conflict between B for the dynamical map and Bx(r) for the ball
around x of radius r!

a. The map B changes every 0 that comes after a 1, and doesn’t change anything else.
Hence, the fixed points of B are the sequences in which 10 never occurs. Using the
usual bar notation, these sequences are

pn = 000 . . . 0︸ ︷︷ ︸
n

1 for n ≥ 0

q = 0

b. For each n ≥ 0, the fixed point pn is attracting, with the open ball Bpn(2−n) as a basin
of attraction. To see why, consider any point w ∈ Bpn(2−n). The sequences x and pn
match for at least the first n+ 1 digits:

w = 000 . . . 0︸ ︷︷ ︸
n

1 .

We can use this to predict what Bk(x) will look like out to k digits past the initial 1.

Bk(w) = 000 . . . 0︸ ︷︷ ︸
n

111 . . . 1︸ ︷︷ ︸
k+1

.

Now we see thatBk(w) matches pn for at least the first n+k+1 digits, so d(pn, B
k(w)) ≤

2−(n+k+1). Hence, the orbit of w stays in Bpn(2−n) forever, and limk→∞B
k(w) = pn.

Since w could’ve been any point in Bpn(2−n), this shows that Bpn(2−n) is a basin of
attraction for pn.

The fixed point q is neither attracting or repelling. [This paragraph is tricky, so be
lenient with the details.] To see why, consider any point w ∈ 2N other than q. To be
different from q, the sequence w must have a 1 in it somewhere, so it looks like

000 . . . 0︸ ︷︷ ︸
n

1

for some whole number n ≥ 0. The map B can only change the digits of w that come
after the initial 1, so Bk(w) will always have the form above, for any k ≥ 0. That
means d(q, Bk(w)) will always be 2−n. As a consequence, the orbit of w can’t limit
to q, and it also can’t leave any open ball around q that it starts in. This makes it
impossible to find a basin of attraction or a region of repulsion for q.
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5 Stripes

Consider the following dynamical system.

State space: 2N.

Dynamical map: Each 0 that’s followed by a 0 turns into a 1, and each 1 that’s
followed by a 1 turns into a 0.

Let’s call this map E. As a demonstration, here’s what E does to one point in 2N.

w = 001110011011110000101110 . . .

E(w) = 100010001000011110100010 . . .

a. Find two fixed points of E, and convince the grader they’re the only two. (Corrected.
The previous version claimed, incorrectly, that there was only one fixed point.)

b. Find two points with minimum period 2, and convince the grader they’re the only
ones.

hint: You already know what E does to the first digit of each 2-digit block. Figure
out what E2 does to the first digit of each 3-digit block.

c. The two points with minimum period 2 form a 2-periodic orbit. Convince the grader
that this orbit is repelling.

hint: To show that a 2-periodic orbit is repelling, you pick a point p on the orbit and
show that it’s a repelling fixed point of E2. As a first step, consider a point w which
first differs from p at the (n+ 1)st digit, and see what E2 does to the first n digits of
w.

Solution

a. The nth digit of E(w) depends on the nth and (n+ 1)st digits of w as shown below.

In w 00 01 10 11

In E(w) 1 0 1 0

If 00 or 11 occurs in w, then E changes the first digit of that block, so E(w) 6= w.
On the other hand, if 00 and 11 never occur in w, then E doesn’t change any digits,
so E(w) = w. Hence, the fixed points of E are 01 and 10—the only two sequences in
which 00 and 11 never occur.

b. The 2-periodic points of E are the fixed points of E2. The nth digit of E2(w) depends
on the nth through (n+ 2)nd digits of w as shown below.

In w 000 001 010 011 100 101 110 111

In E(w) 11 10 01 00 11 10 01 00

In E2(w) 0 1 0 1 0 1 0 1
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If one of the “bad blocks” 001, 011, 100, and 110 occurs in w, then E changes the
first digit of that block, so E2(w) 6= w. On the other hand, if the “good blocks” 000,
010, 101, and 111 are the only three-digit blocks that appear in w, then E2(w) = w.
If you try to lay good blocks side by side without creating any bad blocks, the only
sequences you can make are 0, 1, 01, and 10. These are the fixed points of E2, and
thus the 2-periodic points of E. Excluding the fixed points we found in part a, we see
that 0 and 1 are the only points with minimum period 2.

c. A repelling 2-periodic point of E is defined to be a repelling fixed point of E2. Our
goal, then, is to show that 0 is a repelling fixed point of E2. I’ll argue that B0(2

−1)
is a region of repulsion for 0. Consider any point w ∈ B0(2

−1) other than 0. The
sequences w and 0 must match for at least the first two digits, but w must have a 1

in it somewhere, so w must start with a string of 0s followed by a 001. Consulting the
table from part b, we see that

w = 000 . . . 0 001

E2(w) = 000 . . . 0︸ ︷︷ ︸
n

1

with n ≥ 0. Repeating this argument, we see that the orbit of w eventually contains a
point that looks like

01

or
10 ,

which is outisde the ball B0(2
−1). Since w could’ve been any point w ∈ B0(2

−1) other
than 0, this shows that B0(2

−1) is a region of repulsion for 0.
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