A Hitchhiker’s Guide to the Affine Grassmannian

Anne Dranowski
April 19, 2019
University of Toronto
Figure 1: Stratum of Gr_{SL_2} (alias today’s goal)
What is... an affine Grassmannian
Fix a complex reductive group G.

Write $O = \mathbb{C}[[t]]$ for power series (a PID) and K for Laurent series (Frac O).

Definition A. $Gr = G(K)/G(O)$.
Fix a compact connected Lie group U.

Definition B. Write LU for maps $S^1 \to U$ and ΩU for those maps sending some fixed $z_0 \in S^1$ to $1 \in U$. $LU, \Omega U$ are groups under $f \cdot g(z) = f(z)g(z)$. Call them loop groups.

$\Omega U \cong LU/U$ by

1. constructing a map $LU \to \Omega U : f \mapsto f(z_0)^{-1}f$
2. considering the “loop rotation” action $w \cdot f(z) = f(wz)$ of S^1 on LU
Fix $n \in \mathbb{Z}$.

Let O be a PID and K its field of fractions.

Recall. A lattice L is a free O-module of the vector space K^n such that $K \otimes_O L \cong K^n$ as vector spaces.

Definition C1. $Gr = \{L : L \cong O^n\}$ (as O-modules).

This set carries a natural action of $GL_n K$. We recover **Definition A** by checking that the stabilizer of a given lattice is (isomorphic to) $GL_n O$.

Henceforth $G = GL_n K$, $O = \mathbb{C}[[t]]$ and $K = \mathbb{C}((t))$ and note the other-way-map

$$[g] \in G(K)/G(O) \mapsto O^n g^{-1}$$
Fix $L \in Gr$.

Set

$$V_d(L) = \frac{t^{-d} L \cap O^n}{(tO)^n} \subseteq \frac{O^n}{(tO)^n} \cong \mathbb{C}^n$$

Lemma. $V_d(L)$ is increasing in d from 0 to \mathbb{C}^n.
\(L \in Gr\) has a basis whose elements have some least power of \(t\). Therefore multiplication by \(t^{-d}\) for \(d > 0\) has the effect of pulling \(L\) over \(O^n\).
Corollary. Gr can be written as a union of finite dimensional schemes.

Reason. Gr is a union of

$$Gr[a, b] = \{ t^b O^n \subseteq L \subseteq t^a O^n \} \quad (a \leq b)$$

which can be identified with closed subschemes in some $Gr(k, (b - a)n)$ since $t^a O^n / t^b O^n \cong \mathbb{C}^{(b-a)n}$.

Thus e.g. the “Bruhat decomposition” -every invertible matrix M can be reduced to a unique permutation matrix \tilde{w} by upward row operations, rightward column operations and scaling columns- used to produce a basis of Schubert cycles for H^\bullet of finite Grs can be carefully generalized to affine Grs.
For a finer decomposition consider the \mathbb{C}^\times action on Gr

$$z \in \mathbb{C}^\times : L \mapsto zL = L$$

which scales t so that for $L = \text{Span}_O(v_1, \ldots, v_n)$ for $v_i = \sum v^i_{jk} e_j t^k$

$$tv_i = \sum v^i_{jk} e_j (zt)^k$$

Taking $z \to 0$ has the effect of picking off least powers of basis elements, a tuple in \mathbb{Z}^n which can be interpreted as a vertex of a moment polytope or as a coweight for G.

$$z \cdot (3e_1 t^{-1} + 7e_3 t^5 + e_6)$$
$$= z^{-1}(3e_1 t^{-1} + 7e_3 z^6 t^5 + ze_6)$$
$$= 3e_1 t^{-1} + 7e_3 z^6 t^5 + ze_6 \to 3e_1 t^{-1}$$
For $T \subset G$ a maximal torus, $X_*(T) = \text{Hom}(\mathbb{C}^\times, T) \cong \mathbb{Z}^n$.

There is a map $X_*(T) \to \text{Gr}$ via the map $X_* \to G(K)$ defined by post-composing $\lambda : \mathbb{C}^\times \to T$ and $\text{Spec } K \to \mathbb{C}^\times$ identifying $\lambda \in X_*$ and $t^\lambda \equiv \text{diag}(t^{\lambda_1}, \ldots, t^{\lambda_n}) \in GL_n K$ or under the other-way map $L_\lambda = \text{Span}_O(e; t^{\lambda_i} : 1 \leq i \leq n)$.
Related Facts.

- The fixed points of the T action on Gr are indexed by $X_*(T)$.
- The $z \to 0$ limits of the \mathbb{C}^\times action on Gr are indexed by $X_*(T)$.
- The $G(O)$ orbits of Gr contain unique T-fixed points.
- Finally

$$Gr = \bigsqcup_{\lambda \in X_*} Gr^\lambda$$
Geometric Satake : (

\[H^\bullet : IC_{Gr^\lambda} \in \mathcal{P}_G \mapsto V(\lambda) \in \text{Rep}_G \]

Case \(\lambda = \omega_k \) :)

\[H^\bullet(Gr(k, n)) \cong \bigwedge^k \mathbb{C}^n \quad \text{dim} = \binom{n}{k} \]

Schubert varieties make up the basis on the left and \(k \)-element subsets of \(n \) index a basis on the right.
Emulating ω_k. Consider the linear map $t \cdot : K^n \to K^n$ sending $e_i t^j$ to $e_i t^{j+1}$ induced by multiplication by t on K.

Definition C2. $Gr^> = \{ L \in Gr : t \cdot L \subset L \}$ sometimes called the *positive part of* Gr.

Fix $\lambda, \mu \in X_\ast(T)$ non-decreasing. Write Gr^λ for the set

$$\{ L \in Gr^> : t|_{L/L_0} \text{ has jordan type } \lambda \}$$

and S^μ for the set

$$\{ L \in Gr^> : \lim_{z \to 0} z \cdot L = L_\mu \}$$

where $L_\mu = \text{Span}_O(e_1 t^{\mu_1-1} \ldots e_\nu t^{\mu_\nu-1})$ and $z \cdot$ is our \mathbb{C}^\times action from before.
Fact. The set $\text{Gr}^\lambda \cap S^\mu$ has dimension equal $\dim V(\lambda)_\mu$ and its irreducible components, the so-called MV cycles, form a basis for $H^\bullet(\text{Gr}^\lambda)$ endowing it with a X_\bullet grading, generalizing the case $\lambda = \omega_k$.
There is an action on $H^\bullet(\overline{Gr^\lambda})$ by multiplication by $c(\mathcal{L})$ where \mathcal{L} denotes the det bundle on Gr and c Chern class.

Fact. This action is secretly an action of gl_n. It decomposes as

$$c_{\mu\nu} : H^\bullet(\overline{Gr^\lambda \cap S^\mu}) \to H^\bullet(\overline{Gr^\lambda \cap S^\nu})$$

with $c_{\mu\nu}$ nonzero only if $\nu = \mu + \alpha_i$ so that letting $E_i, F_i \in gl_n$ act by the appropriate components of $c(\mathcal{L}), c(\mathcal{L})^*$ defines $H^\bullet(\overline{Gr^\lambda})$ as an irrep of gl_n.
Definition D. Let $\lambda \geq \mu \in X_*$ viewed as partitions of N and consider the subset of \mathfrak{gl}_N defined by $\mathcal{O}_\lambda \cap \mathcal{T}_\mu$ where $\mathcal{O}_\lambda = \text{GL}_N \cdot J_\lambda$ and by example $\mathcal{T}_{(3,2,2)}$ is elements of the form

\[
\begin{bmatrix}
0 & 1 & & & & & \\
0 & 1 & & & & & \\
* & * & * & * & * & * & * \\
0 & 1 & 0 & & & & \\
* & * & * & * & * & & \\
0 & 1 & & & & & \\
* & * & * & * & * & & \\
\end{bmatrix}
\]

call it M^λ_{μ}.
Fact. The lattice POV supplies $M^\lambda_\mu \cong Gr^\lambda_\mu$ with $L \in Gr^\lambda_\mu$ being sent to the matrix of t

$$[t|_{L_0/L}]_B$$

in the basis

$$B = \{[e_1] \ldots [e_1 t^{\mu_1-1}], \ldots, [e_n] \ldots [e_n t^{\mu_n-1}]\}$$
Examples
Fix $G = SL_2$, $\lambda = (2, 0)$, and $\mu = (1, 1)$.
In $Gr = G(K)/G(O)$ one defines

- $Gr_{\mu} = G_1[[t^{-1}]]t^\mu$ for $G_1 = \text{Ker}(ev_\infty : Gr \mapsto G)$
- $Gr^\lambda = G(O)t^\lambda$
- $Gr^{\lambda}_{\mu} = \overline{Gr^\lambda \cap Gr_\mu}$
Fact. \(K^\times \cong \mathbb{Z} \times O^\times \) or \(0 \neq g \in K \) can be written \(t^n f \) for \(f = f_0 + hot \) and \(n \in \mathbb{Z} \).

Using this fact and the definitions, check that

\[
G(O)t^{(2,0)}G(O) \cap G_1[[t^{-1}]]t^{(1,1)}G(O)
\]

\[
= \left\{ \begin{bmatrix} t + a & b \\ c & t + d \end{bmatrix} : \det = t^2 + (a + d)t + (ad - bc) = t^2 \right\}
\]

\[
\cong \{ a + d = 0, a^2 + bc = 0 \}
\]

the 2-dimensional variety from slide 1.
On the other side $M_{(1,1)}^{(2,0)} = O_{(2,0)}$ and we check that

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix} \cdot \begin{bmatrix}
 0 & 1 \\
 0 & 0
\end{bmatrix} \begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}^{-1} = \begin{bmatrix}
 -ac & a^2 \\
 -c^2 & ac
\end{bmatrix}

= \begin{bmatrix}
 z & x \\
 -y & z
\end{bmatrix} : z^2 + xy = 0
\]
What else is the affine Grassmannian
Definition E. Trivializable bundles definition.

4.2. Global picture. Let X be a curve, which in our case will always be \mathbb{A}^1. Let $\mathbb{A}^{(n)} = \mathbb{A}^1 \times \cdots \times \mathbb{A}^1 // \mathfrak{S}_n$ be the symmetric n-fold product of \mathbb{A}^1

Beilinson-Drinfeld Grassmannian [BD, MVi1, MVi2] is a (reduced) ind-scheme $\mathcal{G}_{\mathbb{A}^{(n)}}$ whose \mathbb{C}-points are described as follows:

(22) $\mathcal{G}_{\mathbb{A}^{(n)}}(\mathbb{C}) = \{(b, \mathcal{V}, t) \mid t : \mathcal{V}_{X-E} \to (X \times V)|_{X-E} \text{ is an isomorphism }\}$,

where $b = (b_1, \ldots, b_n) \in \mathbb{A}^{(n)}$, $E = \{b_1, \ldots, b_n\} \subseteq \mathbb{A}^1$, \mathcal{V} is a vector bundle of rank m, and t is the trivialization of \mathcal{V} off E. The pairs (\mathcal{V}, t) are considered up to an isomorphism.
Thank you for listening