Lusztig datum of an open MV cycle

 ${\it adranovs} @math.toronto.edu$

June 11, 2018

University of Toronto

Warning! Young diagrams/shapes of tableau will be read columnwise.

Warning! Young diagrams/shapes of tableau will be read columnwise.

Theorem B. The Lusztig datum of an MV cycle (computed in terms of certain constructible functions on the affine grassmannian) agrees with that of the associated open MV cycle (computed from its tableau).

Warning! Young diagrams/shapes of tableau will be read columnwise.

Theorem B. The Lusztig datum of an MV cycle (computed in terms of certain constructible functions on the affine grassmannian) agrees with that of the associated open MV cycle (computed from its tableau).

Motivation. Lusztig datum originally defined for canonical basis elements as exponents on PBW elements in PBW expansion of canonical basis elements that survive the q = 0 limit.

what is an open MV cycle?

Consider the following construction.

Consider the following construction. Fix two partitions $\lambda \ge \mu \vdash N$ having at most *n* parts.

Consider the following construction. Fix two partitions $\lambda \ge \mu \vdash N$ having at most *n* parts. Form the subspace T_{μ} of gI_N whose elements look like $\mu_i \times \mu_i$ almost zero block matrices

Consider the following construction. Fix two partitions $\lambda \ge \mu \vdash N$ having at most *n* parts. Form the subspace T_{μ} of gI_N whose elements look like $\mu_i \times \mu_i$ almost zero block matrices

and intersect ${\cal T}_{\mu}$ with the closure of the ${\it GL}_{\it N}$ orbit of the Jordan normal form of type λ

Consider the following construction. Fix two partitions $\lambda \ge \mu \vdash N$ having at most *n* parts. Form the subspace T_{μ} of gI_N whose elements look like $\mu_i \times \mu_i$ almost zero block matrices

and intersect T_{μ} with the closure of the GL_N orbit of the Jordan normal form of type λ i.e. constrain the free entries $\{*\}$ by dim Ker $A^r / \operatorname{Ker} A^{r-1} \ge I_r$ for $I = \lambda^t$

The Mirkovic-Vybornov slice M^{λ}_{μ} . Fix two partitions $\lambda \ge \mu \vdash N$ having at most *n* parts. Form the subspace T_{μ} of gI_N whose elements look like $\mu_i \times \mu_i$ almost zero block matrices

and intersect T_{μ} with the closure of the GL_N orbit of the Jordan normal form of type λ i.e. constrain the free entries $\{*\}$ by dim Ker $A^r / \text{Ker } A^{r-1} \ge I_r$ for $I = \lambda^t$ Denote by Z_{μ}^{λ} the uppertriangular elements of this slice, i.e. elements of the form

Denote by Z_{μ}^{λ} the uppertriangular elements of this slice, i.e. elements of the form

Fact-Aside. Z^{λ}_{μ} is Lagrangian in M^{λ}_{μ} .

Denote by Z^λ_μ the uppertriangular elements of this slice, i.e. elements of the form

Fact-Aside. Z^{λ}_{μ} is Lagrangian in M^{λ}_{μ} .

Definition. Irreducible components of Z^{λ}_{μ} will be called *open MV* cycles.

Denote by Z_{μ}^{λ} the uppertriangular elements of this slice, i.e. elements of the form

Fact-Aside. Z^{λ}_{μ} is Lagrangian in M^{λ}_{μ} .

Definition. Irreducible components of Z^{λ}_{μ} will be called *open MV cycles.* E.g. when $\mu = (1...1)$ these are the *orbital varieties*!

Theorem A

Denote by $SSYT^{\lambda}_{\mu}$ the set of semistandard young tableaux of shape λ and weight $\mu.$

Here the weight of a tableau σ is defined by

wt(σ) = (number of boxes in σ labeled $i : 1 \le i \le n$)

so weight $\mu = (\mu_1, \mu_2, \dots, \mu_n)$ means μ_1 1s, μ_2 2s and so on.

For example

wt
$$\frac{12}{12}$$
 = (3,2,1)

For $A \in Z^{\lambda}_{\mu}$ define the tableau $\sigma(A) \in SSYT^{\lambda}_{\mu}$ by viewing the sequence of Jordan types of principal submatrices

$$\operatorname{shape}(A|_{\mathbb{C}^{\mu_1}}), \operatorname{shape}(A|_{\mathbb{C}^{\mu_1+\mu_2}}), \dots, \operatorname{shape}(A)$$

as a sequence of nested Young diagrams and filling boxes in excess regions

$$\mathsf{shape}(A|_{\mathbb{C}^{\mu_1+\dots+\mu_k}}) - \mathsf{shape}(A|_{\mathbb{C}^{\mu_1+\dots+\mu_{k-1}}})$$

with ks for $1 \le k \le n$.

Theorem A. Fibres of the map $A \mapsto \sigma(A)$ are irreducible and their closures are the irreducible components of Z_{μ}^{λ} .

Spalsenstein's Theorem. Let F be the flag variety of n-step flags in an n-dimensional vector space over an algebraically closed field. Let u be a unipotent transformation of F and let F^u be its fixed points. Irreducible components of F^u are in bijection with standard Young tableaux of shape shape(u) and

Example. Take $\lambda = (2, 2) \ge \mu = (1, 1, 1, 1) \vdash 4$.

Example. Take $\lambda = (2,2) \ge \mu = (1,1,1,1) \vdash 4$. For this choice of μ the subspace $T_{\mu} = gl_4$.

Example. Take $\lambda = (2,2) \ge \mu = (1,1,1,1) \vdash 4$. For this choice of μ the subspace $T_{\mu} = gl_4$. Let's find the fibre over $\sigma = \boxed{\begin{array}{c} 1 & 3 \\ 2 & 4 \end{array}}$.

$$\mathsf{shape}(A|_{\mathbb{C}^1}) = \square \rightsquigarrow A|_{\mathbb{C}^1} = \begin{bmatrix} 0 \end{bmatrix}$$

$$\operatorname{shape}(A|_{\mathbb{C}^2}) = \boxed{\qquad} \rightsquigarrow A|_{\mathbb{C}^2} = \begin{bmatrix} 0 & a \\ & 0 \end{bmatrix}$$

and generically $a \neq 0$

shape
$$(A|_{\mathbb{C}^3}) =$$
 $\longrightarrow A|_{\mathbb{C}^3} =$ $\begin{bmatrix} 0 & a & b \\ & 0 & x \\ & & 0 \end{bmatrix}$

and $ax = 0 \Rightarrow x = 0$

shape
$$(A|_{\mathbb{C}^4}) = \square \longrightarrow A = \begin{bmatrix} 0 & a & b & c \\ & 0 & d \\ & & e \\ & & 0 \end{bmatrix}$$

and ad + be = 0

Conversely, the set $Z^{\lambda}_{\mu} = \{A : \dim \operatorname{Ker} A = 2, \dim \operatorname{Ker} A^2 = 4\}$ decomposes into two irreducible components

$$\left\{ \begin{bmatrix} 0 & a & b & c \\ & & d \\ & & e \\ & & & 0 \end{bmatrix} : ad + be = 0 \right\} \cup \left\{ \begin{bmatrix} 0 & 0 & b & c \\ & & x & d \\ & & & 0 \\ & & & 0 \end{bmatrix} \right\}$$

and generically elements of the first component map to $\frac{1}{2}$

while elements of the second map to $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$

Conversely, the set $Z_{\mu}^{\lambda} = \{A : \dim \operatorname{Ker} A = 2, \dim \operatorname{Ker} A^2 = 4\}$ decomposes into two irreducible components

$$\left\{ \begin{bmatrix} 0 & | & a & | & b & | & c \\ --- & | & 0 & | & d \\ ---- & | & e \\ ---- & | & e \\ ---- & 0 \end{bmatrix} : ad + be = 0 \right\} \cup \left\{ \begin{bmatrix} 0 & | & 0 & | & b & | & c \\ --- & | & | & | & | \\ ---- & | & 0 \\ ---- & 0 \end{bmatrix} \right\}$$

and generically elements of the first component map to $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ while elements of the second map to $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Fact. If X enjoys a smooth map to an irreducible variety whose fibres are nonempty, irreducible and have equal dimensions then X too must be irreducible.

Fact. If X enjoys a smooth map to an irreducible variety whose fibres are nonempty, irreducible and have equal dimensions then X too must be irreducible.

Denote by Z_{σ} the fibre over σ and consider the restriction

$$Z_{\sigma} \to Z_{\tau} : A \mapsto A|_{\mathbb{C}^{|\tau|}}$$
for τ a "subtableau" of σ like $\boxed{1 | 2} \subset \boxed{\frac{1 | 2}{3}}$

Fact. If X enjoys a smooth map to an irreducible variety whose fibres are nonempty, irreducible and have equal dimensions then X too must be irreducible.

Denote by Z_{σ} the fibre over σ and consider the restriction

$$Z_{\sigma} \to Z_{\tau} : A \mapsto A|_{\mathbb{C}^{|\tau|}}$$

for τ a "subtableau" of σ like $\boxed{1 \ 2} \subset \boxed{\frac{1 \ 2}{3}}$

Lemma. When τ is the tableau obtained from σ by deleting the last occurrence of the highest weight the fibres of the restriction map are equidimensional affine of dimension

highest weight — length of row containing last occurrence Note, the lemma is proved by changing basis to the Jordan basis where the claim is trivial. Another example. Let $A \in Z_{(2,2,1)} \subset Z_{(2,2,1)}^{(3,3)}$ so

dim Ker A = 2 dim Ker A^2 / Ker A = 4 dim Ker A^3 / Ker $A^2 = 6$

and further constraints imposed by $\sigma(A) = \frac{\begin{vmatrix} 1 & 2 \\ 1 & 3 \\ 2 & 4 \end{vmatrix}$ force it to take

the form

with bx + y = 0

$$\{ bx + y = 0 \} \mapsto \begin{bmatrix} 0 & 1 & 0 & x & y \\ & 0 & 1 & 0 \\ & & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 1 & 0 & x \\ & & 0 & 1 & 0 \\ & & & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 1 & 0 & x \\ & & 0 & 1 & 0 \\ & & & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 1 & 0 & 1 \\ & & 0 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 1 & 0 & 1 \\ & & 0 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 1 & 0 & 0 \\ & & 0 & 1 & 0 \end{bmatrix}$$

Theorem B

Theorem B. The Lusztig datum of an MV cycle (computed in terms of certain constructible functions on the affine grassmannian) agrees with that of the associated open MV cycle (computed from its tableau).

what are MV cycles? what are open MV cycles?

This set of lattices is denoted $\overline{Gr^{\lambda} \cap S^{\mu}}$

This set of lattices is denoted $\overline{Gr^{\lambda} \cap S^{\mu}}$

Fact. The set $Gr^{\lambda} \cap S^{\mu}$ is a Lagrangian subvariety inside another set $Gr_{\mu}^{\overline{\lambda}} := \overline{Gr^{\lambda}} \cap Gr_{\mu}$ which is isomorphic to the Mirkovic-Vybornov slice M_{μ}^{λ} !

This set of lattices is denoted $\overline{\mathit{Gr}^\lambda\cap S^\mu}$

Fact. The set $Gr^{\lambda} \cap S^{\mu}$ is a Lagrangian subvariety inside another set $Gr_{\mu}^{\overline{\lambda}} := \overline{Gr^{\lambda}} \cap Gr_{\mu}$ which is isomorphic to the Mirkovic-Vybornov slice M_{μ}^{λ} !

Question. Does the isomorphism identify irreducible components of Z^{λ}_{μ} and MV cycles?

This set of lattices is denoted $\overline{\mathit{Gr}^\lambda\cap S^\mu}$

Fact. The set $Gr^{\lambda} \cap S^{\mu}$ is a Lagrangian subvariety inside another set $Gr_{\mu}^{\overline{\lambda}} := \overline{\mathrm{Gr}^{\lambda}} \cap \mathrm{Gr}_{\mu}$ which is isomorphic to the Mirkovic-Vybornov slice M_{μ}^{λ} !

Question. Does the isomorphism identify irreducible components of Z^{λ}_{μ} and MV cycles?

Theorem. Not quite, so call an irreducible component of Z^{λ}_{μ} an *open* MV cycle. Call the image of an irreducible component under the isomorphism by the same name. The Lusztig datum of an open MV cycle however is equal to that of the corresponding MV cycle.

Thank you for listening