Lusztig datum of an open MV cycle

adranovs@math.toronto.edu
June 11, 2018

University of Toronto

> Theorem A. Open MV cycles are labeled by semistandard young tableaux.

Theorem A. Open MV cycles are labeled by semistandard young tableaux.

Warning! Young diagrams/shapes of tableau will be read columnwise.

Theorem A. Open MV cycles are labeled by semistandard young tableaux.

Warning! Young diagrams/shapes of tableau will be read columnwise.

Theorem B. The Lusztig datum of an MV cycle (computed in terms of certain constructible functions on the affine grassmannian) agrees with that of the associated open MV cycle (computed from its tableau).

Theorem A. Open MV cycles are labeled by semistandard young tableaux.

Warning! Young diagrams/shapes of tableau will be read columnwise.

Theorem B. The Lusztig datum of an MV cycle (computed in terms of certain constructible functions on the affine grassmannian) agrees with that of the associated open MV cycle (computed from its tableau).

Motivation. Lusztig datum originally defined for canonical basis elements as exponents on PBW elements in PBW expansion of canonical basis elements that survive the $\mathrm{q}=0$ limit.
what is an open MV cycle?

Consider the following construction.

Consider the following construction. Fix two partitions $\lambda \geq \mu \vdash N$ having at most n parts.

Consider the following construction. Fix two partitions $\lambda \geq \mu \vdash N$ having at most n parts. Form the subspace T_{μ} of $g l_{N}$ whose elements look like $\mu_{i} \times \mu_{j}$ almost zero block matrices

Consider the following construction. Fix two partitions $\lambda \geq \mu \vdash N$ having at most n parts. Form the subspace T_{μ} of $g I_{N}$ whose elements look like $\mu_{i} \times \mu_{j}$ almost zero block matrices
and intersect T_{μ} with the closure of the $G L_{N}$ orbit of the Jordan normal form of type λ

Consider the following construction. Fix two partitions $\lambda \geq \mu \vdash N$ having at most n parts. Form the subspace T_{μ} of $g I_{N}$ whose elements look like $\mu_{i} \times \mu_{j}$ almost zero block matrices
and intersect T_{μ} with the closure of the $G L_{N}$ orbit of the Jordan normal form of type λ i.e. constrain the free entries $\{*\}$ by $\operatorname{dim} \operatorname{Ker} A^{r} / \operatorname{Ker} A^{r-1} \geq I_{r}$ for $I=\lambda^{t}$

The Mirkovic-Vybornov slice M_{μ}^{λ}. Fix two partitions $\lambda \geq \mu \vdash N$ having at most n parts. Form the subspace T_{μ} of $g l_{N}$ whose elements look like $\mu_{i} \times \mu_{j}$ almost zero block matrices
and intersect T_{μ} with the closure of the $G L_{N}$ orbit of the Jordan normal form of type λ ie. constrain the free entries $\{*\}$ by $\operatorname{dim} \operatorname{Ker} A^{r} / \operatorname{Ker} A^{r-1} \geq I_{r}$ for $I=\lambda^{t}$

Denote by Z_{μ}^{λ} the uppertriangular elements of this slice, i.e. elements of the form

Denote by Z_{μ}^{λ} the uppertriangular elements of this slice, i.e. elements of the form

Fact-Aside. Z_{μ}^{λ} is Lagrangian in M_{μ}^{λ}.

Denote by Z_{μ}^{λ} the uppertriangular elements of this slice, i.e. elements of the form

Fact-Aside. Z_{μ}^{λ} is Lagrangian in M_{μ}^{λ}.
Definition. Irreducible components of Z_{μ}^{λ} will be called open $M V$ cycles.

Denote by Z_{μ}^{λ} the uppertriangular elements of this slice, i.e. elements of the form

Fact-Aside. Z_{μ}^{λ} is Lagrangian in M_{μ}^{λ}.
Definition. Irreducible components of Z_{μ}^{λ} will be called open MV cycles. E.g. when $\mu=(1 \ldots 1)$ these are the orbital varieties!

Theorem A

Denote by $S S Y T_{\mu}^{\lambda}$ the set of semistandard young tableaux of shape λ and weight μ.

Here the weight of a tableau σ is defined by

$$
\mathrm{wt}(\sigma)=(\text { number of boxes in } \sigma \text { labeled } i: 1 \leq i \leq n)
$$

so weight $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ means $\mu_{1} 1$ s, $\mu_{2} 2$ s and so on.

For example

$$
\text { wt } \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 1 & 2 \\
\hline 1 & 3 \\
\hline
\end{array}=(3,2,1)
$$

For $A \in Z_{\mu}^{\lambda}$ define the tableau $\sigma(A) \in S S Y T_{\mu}^{\lambda}$ by viewing the sequence of Jordan types of principal submatrices

$$
\operatorname{shape}\left(\left.A\right|_{\mathbb{C}^{\mu_{1}}}\right), \operatorname{shape}\left(\left.A\right|_{\mathbb{C}^{\mu_{1}+\mu_{2}}}\right), \ldots, \operatorname{shape}(A)
$$

as a sequence of nested Young diagrams and filling boxes in excess regions

$$
\operatorname{shape}\left(\left.A\right|_{\mathbb{C}^{\mu_{1}+\cdots+\mu_{k}}}\right)-\operatorname{shape}\left(\left.A\right|_{\mathbb{C}^{\mu_{1}+\cdots+\mu_{k-1}}}\right)
$$

with $k s$ for $1 \leq k \leq n$.

Theorem A. Fibres of the map $A \mapsto \sigma(A)$ are irreducible and their closures are the irreducible components of Z_{μ}^{λ}.

Spalsenstein's Theorem. Let F be the flag variety of n-step flags in an n-dimensional vector space over an algebraically closed field. Let u be a unipotent transformation of F and let F^{u} be its fixed points. Irreducible components of F^{u} are in bijection with standard Young tableaux of shape shape (u) and

1. $\cup_{\tau \geq \sigma} F_{\tau}^{u}$ is closed in F^{u} and F_{σ}^{u} is locally closed
2. $\operatorname{dim} F_{\sigma}^{u}=\sum_{s \geq 1} d_{s}\left(d_{s}-1\right) / 2$
3. $F_{\sigma}^{u}=\cup Y_{j}$ for some Y_{j} affine

Example. Take $\lambda=(2,2) \geq \mu=(1,1,1,1) \vdash 4$.

Example. Take $\lambda=(2,2) \geq \mu=(1,1,1,1) \vdash 4$. For this choice of μ the subspace $T_{\mu}=g l_{4}$.

Example. Take $\lambda=(2,2) \geq \mu=(1,1,1,1) \vdash 4$. For this choice of μ the subspace $T_{\mu}=g /_{4}$. Let's find the fibre over $\sigma=$| 1 | 3 |
| :--- | :--- |
| 2 | 4 | .

Example. Take $\lambda=(2,2) \geq \mu=(1,1,1,1) \vdash 4$. For this choice of μ the subspace $T_{\mu}=g /_{4}$. Let's find the fibre over $\sigma=$| 1 | 3 |
| :--- | :--- |
| 2 | 4 | .

Elements A of this fibre are uppertriangular 4×4 nilpotent matrices such that

Example. Take $\lambda=(2,2) \geq \mu=(1,1,1,1) \vdash 4$. For this choice of μ the subspace $T_{\mu}=g /_{4}$. Let's find the fibre over $\sigma=$| 1 | 3 |
| :--- | :--- |
| 2 | 4 | . Elements A of this fibre are uppertriangular 4×4 nilpotent matrices such that

$$
\operatorname{shape}\left(\left.A\right|_{\mathbb{C}^{1}}\right)=\left.\square \rightsquigarrow A\right|_{\mathbb{C}^{1}}=[0]
$$

Example. Take $\lambda=(2,2) \geq \mu=(1,1,1,1) \vdash 4$. For this choice of μ the subspace $T_{\mu}=g /_{4}$. Let's find the fibre over $\sigma=$| 1 | 3 |
| :--- | :--- |
| 2 | 4 | .

Elements A of this fibre are uppertriangular 4×4 nilpotent matrices such that

$$
\operatorname{shape}\left(\left.A\right|_{\mathbb{C}^{2}}\right)=\left.\square \rightsquigarrow A\right|_{\mathbb{C}^{2}}=\left[\begin{array}{ll}
0 & a \\
& 0
\end{array}\right]
$$

and generically $a \neq 0$

Example. Take $\lambda=(2,2) \geq \mu=(1,1,1,1) \vdash 4$. For this choice of μ the subspace $T_{\mu}=g /_{4}$. Let's find the fibre over $\sigma=$| 1 | 3 |
| :--- | :--- |
| 2 | 4 | .

Elements A of this fibre are uppertriangular 4×4 nilpotent matrices such that

$$
\operatorname{shape}\left(\left.A\right|_{\mathbb{C}^{3}}\right)=\left.\square \square A\right|_{\mathbb{C}^{3}}=\left[\begin{array}{lll}
0 & a & b \\
& 0 & x \\
& & 0
\end{array}\right]
$$

and $a x=0 \Rightarrow x=0$

Example. Take $\lambda=(2,2) \geq \mu=(1,1,1,1) \vdash 4$. For this choice of μ the subspace $T_{\mu}=g /_{4}$. Let's find the fibre over $\sigma=$| 1 | 3 |
| :--- | :--- |
| 2 | 4 | . Elements A of this fibre are uppertriangular 4×4 nilpotent matrices such that

$$
\operatorname{shape}\left(\left.A\right|_{\mathbb{C}^{4}}\right)=\square \square A=\left[\begin{array}{llll}
0 & a & b & c \\
& & 0 & d \\
& & & e \\
& & & 0
\end{array}\right]
$$

and $a d+b e=0$

Conversely, the set $Z_{\mu}^{\lambda}=\left\{A: \operatorname{dim} \operatorname{Ker} A=2, \operatorname{dim} \operatorname{Ker} A^{2}=4\right\}$ decomposes into two irreducible components

$$
\left\{\left[\begin{array}{llll}
0 & a & b & c \\
& & & d \\
& & & e \\
& & & 0
\end{array}\right]: a d+b e=0\right\} \cup\left\{\left[\begin{array}{ccc}
0 & 0 & b \\
& & x
\end{array}\right]\right.
$$

and generically elements of the first component map to \begin{tabular}{|l|l|}
\hline 1 \& 3

\hline 2 \& 4

\hline

 while elements of the second map to

\hline 1 \& 2

\hline \& 4

\hline
\end{tabular}

Conversely, the set $Z_{\mu}^{\lambda}=\left\{A: \operatorname{dim} \operatorname{Ker} A=2, \operatorname{dim} \operatorname{Ker} A^{2}=4\right\}$ decomposes into two irreducible components

$$
\left\{\left[\begin{array}{c:c:c:c}
0 & a & b & c \\
\hdashline--- & 0 & d \\
\hdashline---- & e \\
\hdashline & & 0
\end{array}\right]: a d+b e=0\right\} \cup\left\{\left[\begin{array}{c:c:c}
0 & 0 & b
\end{array} c\right.\right.
$$

and generically elements of the first component map to \begin{tabular}{|l|l|}
\hline 1 \& 3

\hline 2 \& 4

\hline

 while elements of the second map to

\hline 1 \& 2

\hline \& 4

\hline
\end{tabular}

Proof (of Theorem A) sketch.

Proof (of Theorem A) sketch.

Fact. If X enjoys a smooth map to an irreducible variety whose fibres are nonempty, irreducible and have equal dimensions then X too must be irreducible.

Proof (of Theorem A) sketch.

Fact. If X enjoys a smooth map to an irreducible variety whose fibres are nonempty, irreducible and have equal dimensions then X too must be irreducible.

Denote by Z_{σ} the fibre over σ and consider the restriction

$$
Z_{\sigma} \rightarrow Z_{\tau}:\left.A \mapsto A\right|_{\mathbb{C}|\tau|}
$$

for τ a "subtableau" of σ like | 1 | 2 | $\left.\begin{array}{\|l\|l\|}\hline 1 & 2 \\ \hline & \\ \hline\end{array}\right)$ |
| :--- | :--- | :--- |

Proof (of Theorem A) sketch.

Fact. If X enjoys a smooth map to an irreducible variety whose fibres are nonempty, irreducible and have equal dimensions then X too must be irreducible.

Denote by Z_{σ} the fibre over σ and consider the restriction

$$
Z_{\sigma} \rightarrow Z_{\tau}:\left.A \mapsto A\right|_{\mathbb{C}|\tau|}
$$

for τ a "subtableau" of σ like	1	2	2
3			

Lemma. When τ is the tableau obtained from σ by deleting the last occurrence of the highest weight the fibres of the restriction map are equidimensional affine of dimension
highest weight - length of row containing last occurrence
Note, the lemma is proved by changing basis to the Jordan basis where the claim is trivial.

Another example. Let $A \in Z_{|$| 1 | 2 |
| :--- | :--- |
| | 3 |
| 2 | 4 |\(}^{\substack{

\hline(2,2,1)

(3,3)

so}}\) $\operatorname{dim} \operatorname{Ker} A=2 \quad \operatorname{dim} \operatorname{Ker} A^{2} / \operatorname{Ker} A=4 \quad \operatorname{dim} \operatorname{Ker} A^{3} / \operatorname{Ker} A^{2}=6$

and further constraints imposed by $\sigma(A)=$| 1 | 2 |
| :--- | :--- |
| 1 | 3 |
| 2 | 4 | force it to take the form

with $b x+y=0$

$$
\begin{aligned}
& \{b x+y=0\} \longmapsto\left[\begin{array}{lllll}
0 & 1 & 0 & \\
& 0 & 0 & x & y \\
& 0 & 1 & \\
& & & 0 & 0
\end{array}\right] \longmapsto\left[\begin{array}{llll}
0 & 1 & & \\
& 0 & & x \\
& & 0 & 1 \\
& & & 0
\end{array}\right] \longmapsto\left[\begin{array}{ll}
0 & 1 \\
& \\
0
\end{array}\right] \longmapsto[0] \\
& \mathbb{C}_{a, c}^{2} \\
& \mathbb{C}_{x} \quad p t \\
& p t
\end{aligned}
$$

Theorem B

Theorem B. The Lusztig datum of an MV cycle (computed in terms of certain constructible functions on the affine grassmannian) agrees with that of the associated open MV cycle (computed from its tableau).

what are MV cycles? what are open MV cycles?

In type A $\mathrm{Gr}=G((t)) / G[[t]]$ has a lattice description in which an MV cycle is an irreducible component of the set of lattices $L \subset L_{0}:=\mathbb{C}[[t]]^{n}$ such that multiplication by t on L_{0} / L has fixed Jordan type λ and $\lim _{s \rightarrow 0} s \cdot L=L_{\mu}$ for fixed μ.

In type A $\mathrm{Gr}=G((t)) / G[[t]]$ has a lattice description in which an MV cycle is an irreducible component of the set of lattices
$L \subset L_{0}:=\mathbb{C}[[t]]^{n}$ such that multiplication by t on L_{0} / L has fixed Jordan type λ and $\lim _{s \rightarrow 0} s \cdot L=L_{\mu}$ for fixed μ.
This set of lattices is denoted $\overline{G r^{\lambda} \cap S^{\mu}}$

In type A $\mathrm{Gr}=G((t)) / G[[t]]$ has a lattice description in which an MV cycle is an irreducible component of the set of lattices
$L \subset L_{0}:=\mathbb{C}[[t]]^{n}$ such that multiplication by t on L_{0} / L has fixed Jordan type λ and $\lim _{s \rightarrow 0} s \cdot L=L_{\mu}$ for fixed μ.
This set of lattices is denoted $\overline{G r^{\lambda} \cap S^{\mu}}$
Fact. The set $\overline{G r^{\lambda} \cap S^{\mu}}$ is a Lagrangian subvariety inside another set $G r_{\mu}^{\bar{\lambda}}:=\overline{\mathrm{Gr}^{\lambda}} \cap \mathrm{Gr}_{\mu}$ which is isomorphic to the Mirkovic-Vybornov slice M_{μ}^{λ} !

In type $\mathrm{A} \mathrm{Gr}=G((t)) / G[[t]]$ has a lattice description in which an MV cycle is an irreducible component of the set of lattices
$L \subset L_{0}:=\mathbb{C}[[t]]^{n}$ such that multiplication by t on L_{0} / L has fixed Jordan type λ and $\lim _{s \rightarrow 0} s \cdot L=L_{\mu}$ for fixed μ.
This set of lattices is denoted $\overline{G r^{\lambda} \cap S^{\mu}}$
Fact. The set $\overline{G r^{\lambda} \cap S^{\mu}}$ is a Lagrangian subvariety inside another set $G r_{\mu}^{\bar{\lambda}}:=\overline{\mathrm{Gr}^{\lambda}} \cap \mathrm{Gr}_{\mu}$ which is isomorphic to the Mirkovic-Vybornov slice M_{μ}^{λ} !

Question. Does the isomorphism identify irreducible components of Z_{μ}^{λ} and MV cycles?

In type $\mathrm{A} \mathrm{Gr}=G((t)) / G[[t]]$ has a lattice description in which an MV cycle is an irreducible component of the set of lattices
$L \subset L_{0}:=\mathbb{C}[[t]]^{n}$ such that multiplication by t on L_{0} / L has fixed Jordan type λ and $\lim _{s \rightarrow 0} s \cdot L=L_{\mu}$ for fixed μ.
This set of lattices is denoted $\overline{G r^{\lambda} \cap S^{\mu}}$
Fact. The set $\overline{G r^{\lambda} \cap S^{\mu}}$ is a Lagrangian subvariety inside another set $G r_{\mu}^{\bar{\lambda}}:=\overline{\mathrm{Gr}^{\lambda}} \cap \mathrm{Gr}_{\mu}$ which is isomorphic to the Mirkovic-Vybornov slice M_{μ}^{λ} !

Question. Does the isomorphism identify irreducible components of Z_{μ}^{λ} and MV cycles?
Theorem. Not quite, so call an irreducible component of Z_{μ}^{λ} an open MV cycle. Call the image of an irreducible component under the isomorphism by the same name. The Lusztig datum of an open MV cycle however is equal to that of the corresponding MV cycle.

Thank you for listening

