Quiver Representations and Quiver Varieties

Mathematics UNIVERSITY OF TORONTO

Towards Theorem C

Definition. We say that Z and M are extra-compatible if for all $n \in \mathbb{N}$ and all weights μ we have $\operatorname{dim} \Gamma(Z, \mathcal{O}(\mathfrak{n}))_{\mu}=\chi\left(\left\{0 \subseteq N_{1} \subseteq \cdots \subseteq N_{n} \subseteq M: \sum \operatorname{dim} N_{k}=-\mu\right\}\right)$
Example 3. Taking $n=1$ gives $\operatorname{dim} \Gamma(Z, \mathcal{O})_{\mu}=\chi(\{N \subseteq M: \operatorname{dim} N=-\mu\})$ which can be viewed as an upgrade of equality of polytopes.
Question. Are equivariant invariants of Z and the structure of a general point M related? How is this connected to the relationship between the basis vectors v_{Z} and \mathfrak{u}_{M} ?
Evidence for A_{5} extra-compatibility. Let

$$
\tau=\begin{array}{ll}
1 & 2 \\
3 & 4 \\
\hline 5
\end{array}
$$

Then X_{τ} is the vanishing locus of the ideal
$\left(a_{5}, a_{10}, a_{1} a_{6}+a_{2} a_{8}, a_{7} a_{8}-a_{6} a_{9}, a_{1} a_{7}+a_{2} a_{9}\right)$
in $\mathbb{C}[\mathfrak{n}]$ where this time a_{i} are the matrix entries of a nilpotent upper triangular matrix. The ideal

$$
\left[\begin{array}{lll}
0 & a_{1} \\
0 & 0
\end{array}\right] \in \mathbb{O}_{(2)}\left[\begin{array}{lll}
0 & a_{1} & a_{2} \\
0 & 0 & a_{5} \\
0 & 0 & 0
\end{array}\right] \in \mathbb{O}_{(2,1)}\left[\begin{array}{llll}
0 & a_{1} & a_{2} & a_{3} \\
0 & 0 & a_{5} \\
0 & 0 & a_{6} & a_{8} \\
0 & 0 & 0 & a_{8} \\
0 & 0
\end{array}\right] \in \mathbb{O}_{(2,2)} A \in \mathbb{O}_{\lambda}
$$

Its multidegree in $\mathbb{T}_{\mu} \cap \mathfrak{n}$ is
$\left(\alpha_{1} \alpha_{2}+\alpha_{2}^{2}+\alpha_{2} \alpha_{3}\right) \alpha_{4}^{2}+\left(\alpha_{1} \alpha_{2}^{2}+\alpha_{2}^{3}+\alpha_{2} \alpha_{3}^{2}+2\left(\alpha_{1} \alpha_{2}+\alpha_{2}^{2}\right) \alpha_{3}\right) \alpha_{4}$.
The projective closure of the associated $M V$ cycle Z_{τ} is given by the homogenization of the ideal
where $\boldsymbol{b}_{\boldsymbol{i}}$ are Plücker coordinates (minors of an augmented matrix $\tilde{\mathcal{A}}$) on an ordinary Grassmannian into which $\mathcal{G r}^{\wedge}$ embeds. Using Macaulay 2 we obtain
$\operatorname{dim} \Gamma(Z, \mathcal{O}(n))=\frac{(n+1)^{2}(n+2)^{2}(n+3)(5 n+12)}{144}$
The general module M_{τ} defined by τ is

$22 \quad 4$

with the maps chosen such that $\operatorname{Ker}\left(M_{2} \rightarrow M_{3}\right), \operatorname{Im}\left(M_{3} \rightarrow M_{2}\right)$ and $\operatorname{Im}\left(M_{1} \rightarrow M_{2}\right)$ are all distinct.
The composition series
$F_{i}\left(M_{\tau}\right)=\left\{0=M_{\tau}^{0} \subseteq M_{\tau}^{1} \subseteq \cdots \subseteq M_{\tau}^{m}=M_{\tau}: M_{\tau}^{k} / M_{\tau}^{k-1} \cong S_{i_{k}}\right.$ for all $\left.k\right\}$
are used to construct the so-called flag function $\overline{\bar{D}}(M):=\sum_{i} \chi\left(F_{i}(M)\right) \bar{D}_{\text {i }}$. It is this analogue of
the Euler class that enables us to compare vectors in $\mathbb{C}[N]$. In this example, the sequences (3,4, 1 ,
$(3,4,2,3,2,1)(3,2,4,3,2,1)(2,3,4,2,3,1)(2,3,2,1,4,3)$
$(2,3,2,4,3,1)(2,3,4,2,1,3)(2,3,2,4,1,3)(3,2,1,2,4,3)$
$(3,4,2,1,2,3)(3,2,4,1,2,3)(3,2,1,4,2,3)$
efine $F_{i}(M) \cong p t$, so $\chi\left(F_{i}(M)\right)=1$, while the sequences

$$
\begin{aligned}
& (3,4,2,2,3,1)(3,2,4,2,3,1)(3,2,2,4,3,1)(3,4,2,2,1,1,3) \\
& (3,2,4,2,2,1,3)(3,2,2,4,1,3)(3,2,2,1,4,3)
\end{aligned}
$$

define $F_{i}(M) \cong \mathbb{P}^{1}$, so $\chi\left(F_{i}(M)\right)=2$. For all other values of $i, F_{i}(M)=\varnothing$.
The flag function is a rational function, but we can use the multidegree $\mathfrak{p}(\mu)$ of \mathbb{T}_{μ} to clear the denominator. By cirect computation we obtain $\operatorname{that}^{\mathrm{D}}\left(\mathcal{M}_{\tau}\right) \mathfrak{p}(\mu)=\mathrm{mdeg}_{\mathbb{T}_{\mu} \cap n}\left(Z_{\tau}\right)$. In fact, we projectively normal, and that as a consequence $\left(M_{\tau}, \mathrm{Z}_{\tau}\right)$ are extra-compatible!

Appendix: Equivariant invariants of MV cycles

Most Λ-modules M are not extra-compatibly paired with any MV cycle; for example if $\mathrm{G}=\mathrm{SL}_{3}$ and M is the sum of the two simple Λ-modules, then the rhombus $\operatorname{Pol}(M)$ is the union of two MV polytopes, each a triangle. However, for any Λ-module M, we expect that there will be a
corresponding coherent sheaf on the affine Grassmannian, supported on a union of MV cycles. The Euler characteristic of the "quiver grassmannian"
$\operatorname{Gr}_{\mu}\left(M[t] / \mathrm{t}^{n}\right):=\left\{N \subseteq M \otimes \mathbb{C}[t] / \mathrm{t}^{n}: N\right.$ is a $\Lambda \otimes \mathbb{C}[t]-$ submodule of $\left.\operatorname{dim} N=\mu\right\}$ coincides with that of the flag variety $F_{n, \mu}(M)$.
Conjecture. [BKK19] For any preprojective algebra module M of dimension vector v, there exists a coherent sheaf \mathcal{F}_{M} supported on $\overline{\mathrm{S}_{+}^{0} \cap \mathrm{~S}_{-}^{-v}}$ such that
$\Gamma\left(G r, \mathcal{F}_{M} \otimes \mathcal{O}(\mathfrak{n})\right) \cong H^{\bullet}\left(\mathbb{G}\left(M[t] / t^{n}\right)\right)$
as T^{\bigvee}-representations. For example, if Z and M are extra-compatible, then we can take $\mathcal{F}_{\mathrm{M}}=\mathcal{O}_{Z}$ From $\mathfrak{f} \in \mathbb{C}[\mathbf{N}], e_{\mathbf{i}}=e_{\mathbf{i}_{1}} \cdots e_{\mathbf{i}_{\mathfrak{p}}} \in \operatorname{Un}$, and $D_{\mathbf{i}}=\left(\pi_{\mathfrak{i}}\right) *$ (Lebesgue measure) with $\pi\left(e_{\mathfrak{p}}\right)=\alpha_{1}+\cdots+$ $\alpha_{\mathfrak{p}}$ we construct the piecewise polynomial measures on \mathfrak{t}_{R}^{*}

$$
D(f)=\sum_{\mathbf{i}}\left\langle e_{i}, f\right\rangle D_{i}
$$

Using the fact that the exponential functions $e^{\beta}(x)=e^{\langle\beta, x\rangle}$ form a basis for the meromorphic functions on $\mathfrak{t}_{\mathbb{C}}$ we can consider the Fourier transforms $\hat{f}(\beta)=\int_{t_{\mathbb{C}}} f(x) e^{-\beta}(x) d x$. In particular, the Fourier transform of a distribution on \mathfrak{t}^{*} is the meromorphic function $\mathrm{FT}(\mu)(x)=\int_{\tau_{\mathrm{R}}^{*}} \mathcal{e}^{\beta}(x) \mathrm{d} \mu$
 expansion of $\mathrm{FT}(\mathrm{D}(\mathrm{f})$).
Theorem. The equivariant multiplicity of an MV cycle Z of coweight $(0,-v)$ at the point L_{-v} is equal o $\overline{\mathrm{D}}\left(v_{\mathrm{Z}}\right)=\mathrm{FT}\left(\mathrm{D}\left(v_{Z}\right)\right)(-v)$ is equal to the $\mathrm{p}(\mu)$-normalized multidegree.

(Bure 1. The $\operatorname{SL}(3)$ examples of D_{i} for $i=(1,2,1)$ and $(2,1,1)$, vertices labeled by their positions, with the shading Rules for computing multidegrees. Let $\mathrm{T}=\left(\mathbb{C}^{\times}\right)^{m}$ be a torus, and suppose $(\mathrm{X} \subset W$) is a pair of

$\left\{Z=W=\{0\}\right.$, then $\operatorname{mdeg}_{W} X=1$.

I Z has top-dimensional components Z_{i}, then $m \operatorname{deg}_{W} X=\sum_{i}$ mdeg $_{w} X_{i}$.
Z is irreducible and H is a T-invariant hyperplane in W, then if $Z \not \subset H$, then $m \operatorname{deg}_{W} Z=m \operatorname{deg}_{H}(Z \cap H)$; if

Reference

[BK12] Bauman and Kamniter. Preprojective algebras and MV polytopes. Reperesentation Theory of the American Mathematical Society.

[Dra19] Dranowski. Generalized orbital varieteies for Mirkovic--Vbornov slices as afffinizations of Mirkovic--Vionen cycles. artiv prepepin
arxi:1905.08174, 2019
Kam10] Joel Kamniter. Mirkovic-Vilonen cycles and polytopes. Annals of Mathematics, 17111. 245-294, 2010
[usoo]. Geores and
MV07] Ivan Mirkovic and Kari Vilonen. Geometric Langlands duality and representations of algebraic groups over commutative rings
MV19] Lan Mirkoic and Maxim Y Yborrovor. Comparison of quiver varietees, loop Grassmannians and nipootent cones in type A with an

