Measuring bases

Anne Dranowski

February 5, 2020
UC Davis Algebraic Geometry

The question

We would like to compare two bases in representations of $G=G L_{m}$

The question

We would like to compare two bases in representations of $G=G L_{m}$

- the MV basis

The question

We would like to compare two bases in representations of $G=G L_{m}$

- the MV basis indexed by varieties Z

The question

We would like to compare two bases in representations of $G=G L_{m}$

- the MV basis indexed by varieties Z
- the dual semicanonical basis

The question

We would like to compare two bases in representations of $G=G L_{m}$

- the MV basis indexed by varieties Z
- the dual semicanonical basis indexed by varieties Y

The question

We would like to compare two bases in representations of $G=G L_{m}$

- the MV basis indexed by varieties Z
- the dual semicanonical basis indexed by varieties Y

Both bases are crystal bases,

The question

We would like to compare two bases in representations of $G=G L_{m}$

- the MV basis indexed by varieties Z
- the dual semicanonical basis indexed by varieties Y

Both bases are crystal bases, with common polytope models:

The question

We would like to compare two bases in representations of $G=G L_{m}$

- the MV basis indexed by varieties Z
- the dual semicanonical basis indexed by varieties Y

Both bases are crystal bases, with common polytope models:

such that $\operatorname{Pol}(Z)=\operatorname{Pol}(Y)$ whenever $b(Z)=b(Y)$

The question

We would like to compare two bases in representations of $G=G L_{m}$

- the MV basis indexed by varieties Z
- the dual semicanonical basis indexed by varieties Y

Both bases are crystal bases, with common polytope models:

such that $\operatorname{Pol}(Z)=\operatorname{Pol}(Y)$ whenever $b(Z)=b(Y)$
KK: if $\operatorname{Pol}(Z)=\operatorname{Pol}(Y)$ do associated basis vectors agree...in some sense?

The answer

No, we have an example.

The answer

No, we have an example.
But first

1. in what sense?

The answer

No, we have an example.
But first

1. in what sense?
2. tools (equivariant invariants) used to compare

Roadmap

1. Recollections
2. Setting up the comparison
3. Means to compute
4. Conclusion

Recollections

Notation

Let G be an ADE group.

Notation

Let G be an ADE group. Fix a reduced expression for the longest word in its Weyl group. (The quantities we'll consider will depend on it.)

Notation

Let G be an ADE group. Fix a reduced expression for the longest word in its Weyl group. (The quantities we'll consider will depend on it.) Denote by U a maximal unipotent subgroup.

Notation

Let G be an ADE group. Fix a reduced expression for the longest word in its Weyl group. (The quantities we'll consider will depend on it.)

Denote by U a maximal unipotent subgroup. Denote by \mathcal{U} the universal enveloping algebra of its Lie algebra.

Notation

Let G be an ADE group. Fix a reduced expression for the longest word in its Weyl group. (The quantities we'll consider will depend on it.)

Denote by U a maximal unipotent subgroup. Denote by \mathcal{U} the universal enveloping algebra of its Lie algebra.
Write $\Pi=\left\{\alpha_{i}\right\}$ for its simple roots,

Notation

Let G be an ADE group. Fix a reduced expression for the longest word in its Weyl group. (The quantities we'll consider will depend on it.)

Denote by U a maximal unipotent subgroup. Denote by \mathcal{U} the universal enveloping algebra of its Lie algebra.

Write $\Pi=\left\{\alpha_{i}\right\}$ for its simple roots, and $e_{i}=e_{\alpha_{i}}$ for associated Chevalley generators of \mathcal{U}.

Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}.

Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the \#П preprojective relations.

Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the \#П preprojective relations.

Denote by \wedge Lusztig's nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.

Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the \#П preprojective relations.

Denote by \wedge Lusztig's nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.

Given $Y \in \operatorname{Irr} \wedge$ let $M \in Y$ be a general point.

Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the \#П preprojective relations.

Denote by \wedge Lusztig's nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.
Given $Y \in \operatorname{Irr} \wedge$ let $M \in Y$ be a general point.
Denote the perfect pairing $\mathcal{U} \times \mathbb{C}[U] \rightarrow \mathbb{C}$ that sends (a, f) to $a \cdot f(1)$ by $\langle a, f\rangle$.

Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the \#П preprojective relations.

Denote by \wedge Lusztig's nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.
Given $Y \in \operatorname{Irr} \wedge$ let $M \in Y$ be a general point.
Denote the perfect pairing $\mathcal{U} \times \mathbb{C}[U] \rightarrow \mathbb{C}$ that sends (a, f) to $a \cdot f(1)$ by $\langle a, f\rangle$.

If $\operatorname{dim} M=p$

Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the \#П preprojective relations.

Denote by \wedge Lusztig's nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.
Given $Y \in \operatorname{Irr} \wedge$ let $M \in Y$ be a general point.
Denote the perfect pairing $\mathcal{U} \times \mathbb{C}[U] \rightarrow \mathbb{C}$ that sends (a, f) to $a \cdot f(1)$ by $\langle a, f\rangle$.

If $\operatorname{dim} M=p$ then $f_{Y} \in \mathbb{C}[U]$ is defined by the system

$$
\left\langle e_{\underline{\underline{i}}}, f_{Y}\right\rangle=\chi\left(F_{\underline{\underline{i}}}(M)\right) \text { for all } \underline{i}=\left(i_{1}, \ldots, i_{p}\right)
$$

Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the \#П preprojective relations.

Denote by \wedge Lusztig's nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.
Given $Y \in \operatorname{Irr} \wedge$ let $M \in Y$ be a general point.
Denote the perfect pairing $\mathcal{U} \times \mathbb{C}[U] \rightarrow \mathbb{C}$ that sends (a, f) to $a \cdot f(1)$ by $\langle a, f\rangle$.

If $\operatorname{dim} M=p$ then $f_{Y} \in \mathbb{C}[U]$ is defined by the system

$$
\left\langle e_{\underline{\underline{i}}}, f_{Y}\right\rangle=\chi\left(F_{\underline{\underline{i}}}(M)\right) \text { for all } \underline{i}=\left(i_{1}, \ldots, i_{p}\right)
$$

where $e_{\underline{i}}=e_{i_{1}} e_{i_{2}} \cdots e_{i_{p}}$ and

$$
F_{\underline{\mathbf{i}}}(M)=\left\{0=M^{0} \subset M^{1} \subset \cdots \subset M^{p}=M: M^{k} / M^{k-1} \cong S_{i_{k}}\right\}
$$

Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the \#П preprojective relations.

Denote by \wedge Lusztig's nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.
Given $Y \in \operatorname{Irr} \wedge$ let $M \in Y$ be a general point.
Denote the perfect pairing $\mathcal{U} \times \mathbb{C}[U] \rightarrow \mathbb{C}$ that sends (a, f) to $a \cdot f(1)$ by $\langle a, f\rangle$.

If $\operatorname{dim} M=p$ then $f_{Y} \in \mathbb{C}[U]$ is defined by the system

$$
\left\langle e_{\underline{\underline{i}}}, f_{Y}\right\rangle=\chi\left(F_{\underline{\underline{i}}}(M)\right) \text { for all } \underline{i}=\left(i_{1}, \ldots, i_{p}\right)
$$

where $e_{\underline{i}}=e_{i_{1}} e_{i_{2}} \cdots e_{i_{p}}$ and

$$
F_{\underline{\mathbf{i}}}(M)=\left\{0=M^{0} \subset M^{1} \subset \cdots \subset M^{p}=M: M^{k} / M^{k-1} \cong S_{i_{k}}\right\}
$$

Note, $\mathbb{C}[U]$ is graded by the positive root cone.

Example

$$
\begin{aligned}
& G=S L_{3} \mathbb{C}, \Pi=\left\{\alpha_{1}, \alpha_{2}\right\}, \text { quiver } \\
& \Lambda=\bigoplus_{\left(\nu_{1}, \nu_{2}\right)}\left\{\left(x_{h}, x_{\bar{h}}\right) \in T^{*} \operatorname{Hom}\left(\mathbb{C}^{\nu_{1}}, \mathbb{C}^{\nu_{2}}\right): x_{h} x_{\bar{h}}=0 \text { and } x_{\bar{h}} x_{h}=0\right\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& G=S L_{3} \mathbb{C}, \Pi=\left\{\alpha_{1}, \alpha_{2}\right\}, \text { quiver } \bullet \\
& \Lambda=\bigoplus_{\left(\nu_{1}, \nu_{2}\right)}\left\{\left(x_{h}, x_{\bar{h}}\right) \in T^{*} \operatorname{Hom}\left(\mathbb{C}^{\nu_{1}}, \mathbb{C}^{\nu_{2}}\right): x_{h} x_{\bar{h}}=0 \text { and } x_{\bar{h}} x_{h}=0\right\}
\end{aligned}
$$

Connected component of $M \in \Lambda$ having grdim $M=\alpha_{1}+\alpha_{2}$ is

$$
\left\{\left(x_{h}, x_{\bar{h}}\right) \in \mathbb{C}^{2}: x_{h} x_{\bar{h}}=0\right\}=\left\{x_{h}=0\right\} \sqcup\left\{x_{\bar{h}}=0\right\}
$$

Example

$$
\begin{aligned}
& G=S L_{3} \mathbb{C}, \Pi=\left\{\alpha_{1}, \alpha_{2}\right\}, \text { quiver } \bullet \\
& \Lambda=\bigoplus_{\left(\nu_{1}, \nu_{2}\right)}\left\{\left(x_{h}, x_{\bar{h}}\right) \in T^{*} \operatorname{Hom}\left(\mathbb{C}^{\nu_{1}}, \mathbb{C}^{\nu_{2}}\right): x_{h} x_{\bar{h}}=0 \text { and } x_{\bar{h}} x_{h}=0\right\}
\end{aligned}
$$

Connected component of $M \in \Lambda$ having $\operatorname{grdim} M=\alpha_{1}+\alpha_{2}$ is

$$
\begin{aligned}
\left\{\left(x_{h}, x_{\bar{h}}\right) \in \mathbb{C}^{2}: x_{h} x_{\bar{h}}=0\right\} & =\left\{x_{h}=0\right\} \sqcup\left\{x_{\bar{h}}=0\right\} \\
& =\{1 \leftarrow 1\} \sqcup\{1 \rightarrow 1\}
\end{aligned}
$$

Example

$$
\begin{aligned}
G= & S L_{3} \mathbb{C}, \Pi=\left\{\alpha_{1}, \alpha_{2}\right\}, \text { quiver } \bullet \\
& \Lambda=\bigoplus_{\left(\nu_{1}, \nu_{2}\right)}\left\{\left(x_{h}, x_{\bar{h}}\right) \in T^{*} \operatorname{Hom}\left(\mathbb{C}^{\nu_{1}}, \mathbb{C}^{\nu_{2}}\right): x_{h} x_{\bar{h}}=0 \text { and } x_{\bar{h}} x_{h}=0\right\}
\end{aligned}
$$

Connected component of $M \in \Lambda$ having $\operatorname{grdim} M=\alpha_{1}+\alpha_{2}$ is

$$
\begin{aligned}
\left\{\left(x_{h}, x_{\bar{h}}\right) \in \mathbb{C}^{2}: x_{h} x_{\bar{h}}=0\right\} & =\left\{x_{h}=0\right\} \sqcup\left\{x_{\bar{h}}=0\right\} \\
& =\{1 \leftarrow 1\} \sqcup\{1 \rightarrow 1\} \\
& =\{z\} \sqcup\{x y-z\} \text { in } \mathbb{C}[U]
\end{aligned}
$$

Example

$$
\begin{aligned}
G= & S L_{3} \mathbb{C}, \Pi=\left\{\alpha_{1}, \alpha_{2}\right\}, \text { quiver } \bullet \\
& \Lambda=\bigoplus_{\left(\nu_{1}, \nu_{2}\right)}\left\{\left(x_{h}, x_{\bar{h}}\right) \in T^{*} \operatorname{Hom}\left(\mathbb{C}^{\nu_{1}}, \mathbb{C}^{\nu_{2}}\right): x_{h} x_{\bar{h}}=0 \text { and } x_{\bar{h}} x_{h}=0\right\}
\end{aligned}
$$

Connected component of $M \in \Lambda$ having $\operatorname{grdim} M=\alpha_{1}+\alpha_{2}$ is

$$
\begin{aligned}
\left\{\left(x_{h}, x_{\bar{h}}\right) \in \mathbb{C}^{2}: x_{h} x_{\bar{h}}=0\right\} & =\left\{x_{h}=0\right\} \sqcup\left\{x_{\bar{h}}=0\right\} \\
& =\{1 \leftarrow 1\} \sqcup\{1 \rightarrow 1\} \\
& =\{z\} \sqcup\{x y-z\} \text { in } \mathbb{C}[U]
\end{aligned}
$$

if $U=\left\{\left[\begin{array}{lll}1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right]\right\}$

Dual semicanonical basis in $\mathbb{C}[U]$

Theorem (GLS)
The elements $\left\{f_{Y}\right\}$ as Y ranges in $\operatorname{Irr} \wedge$ form the dual semicanonical basis, denoted \mathcal{B}_{\wedge}.

The affine Grassmannian

We give the general definition along with the lattice model valid only in type A.

The affine Grassmannian

We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O}=\mathbb{C}[t]$ and $\mathcal{K}=\mathbb{C}(t)$.

The affine Grassmannian

We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O}=\mathbb{C}[t]$ and $\mathcal{K}=\mathbb{C}(t)$. Given $\mu \in X^{\bullet}(T)$, write t^{μ} for its image in $G(\mathcal{K})$ and L_{μ} for its image in

$$
\mathcal{G r}=G(\mathcal{K}) / G(\mathcal{O})
$$

The affine Grassmannian

We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O}=\mathbb{C}[t]$ and $\mathcal{K}=\mathbb{C}(t)$. Given $\mu \in X^{\bullet}(T)$, write t^{μ} for its image in $G(\mathcal{K})$ and L_{μ} for its image in

$$
\mathcal{G r}=G(\mathcal{K}) / G(\mathcal{O}) \stackrel{A}{=}\left\{L \underset{\text { rank } m}{\text { free }} \mathcal{O}^{m}: t L \subset L\right\}
$$

The affine Grassmannian

We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O}=\mathbb{C}[t]$ and $\mathcal{K}=\mathbb{C}(t)$. Given $\mu \in X^{\bullet}(T)$, write t^{μ} for its image in $G(\mathcal{K})$ and L_{μ} for its image in

$$
\mathcal{G r}=G(\mathcal{K}) / G(\mathcal{O}) \stackrel{A}{=}\left\{L \underset{\text { rank } m}{\text { free }} \mathcal{O}^{m}: t L \subset L\right\}
$$

Example: $L_{\mu}=\operatorname{Span}_{\mathcal{O}}\left(e_{i} t^{j}: 0 \leq j<\mu_{i}\right)$.

The affine Grassmannian

We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O}=\mathbb{C}[t]$ and $\mathcal{K}=\mathbb{C}(t)$. Given $\mu \in X^{\bullet}(T)$, write t^{μ} for its image in $G(\mathcal{K})$ and L_{μ} for its image in

$$
\mathcal{G r}=G(\mathcal{K}) / G(\mathcal{O}) \stackrel{A}{=}\left\{L \underset{\text { rank } m}{\underset{\text { free }}{C}} \mathcal{O}^{m}: t L \subset L\right\}
$$

Example: $L_{\mu}=\operatorname{Span}_{\mathcal{O}}\left(e_{i} t^{j}: 0 \leq j<\mu_{i}\right)$. Fact: $\mathcal{G} r^{T}=X^{\bullet}(T)$

The affine Grassmannian

We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O}=\mathbb{C}[t]$ and $\mathcal{K}=\mathbb{C}(t)$. Given $\mu \in X^{\bullet}(T)$, write t^{μ} for its image in $G(\mathcal{K})$ and L_{μ} for its image in

$$
\mathcal{G r}=G(\mathcal{K}) / G(\mathcal{O}) \stackrel{A}{=}\left\{\underset{\text { rank } m}{\stackrel{\text { free }}{C}} \mathcal{O}^{m}: t L \subset L\right\}
$$

Example: $L_{\mu}=\operatorname{Span}_{\mathcal{O}}\left(e_{i} \dagger^{j}: 0 \leq j<\mu_{i}\right)$. Fact: $\mathcal{G r}{ }^{T}=X^{\bullet}(T)$ and other distinguished subsets (needed for the definition of MV cycles and later open subset thereof) are all orbits of fixed points

The affine Grassmannian

We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O}=\mathbb{C}[t]$ and $\mathcal{K}=\mathbb{C}(t)$. Given $\mu \in X^{\bullet}(T)$, write t^{μ} for its image in $G(\mathcal{K})$ and L_{μ} for its image in

$$
\mathcal{G r}=G(\mathcal{K}) / G(\mathcal{O}) \stackrel{A}{=}\left\{L \underset{\text { rank } m}{\underset{\text { free }}{C}} \mathcal{O}^{m}: t L \subset L\right\}
$$

Example: $L_{\mu}=\operatorname{Span}_{\mathcal{O}}\left(e_{i} t^{j}: 0 \leq j<\mu_{i}\right)$. Fact: $\mathcal{G} r^{T}=X \bullet(T)$ and other distinguished subsets (needed for the definition of MV cycles and later open subset thereof) are all orbits of fixed points

$$
\begin{aligned}
& \mathcal{G} r^{\lambda}=\mathcal{G}(\mathcal{O}) L_{\lambda} \quad=\left\{L \in \mathcal{G r}:\left.t\right|_{\mathcal{O}^{m} / L} \text { has Jordan type } \lambda\right\} \\
& \mathcal{G} r_{\mu}=G_{1}\left[t^{-1}\right] L_{\mu}=\left\{L \in \mathcal{G r}: L=\operatorname{Span}_{\mathcal{O}}\left(v_{1}, \ldots, v_{m}\right)\right. \text { such that } \\
&\left.\quad v_{j}=t^{\mu_{j}} e_{j}+\sum p_{i j} e_{i} \text { with } \operatorname{deg} p_{i j}<\mu_{j}\right\} \\
& S_{-}^{\mu}=U_{-}(\mathcal{K}) L_{\mu}=\left\{L \in \mathcal{G r} r_{\mu}: \operatorname{dim}\left(\mathcal{O}^{k} / L \cap \mathcal{O}^{k}\right)=\mu_{1}+\cdots+\mu_{k}\right\}
\end{aligned}
$$

MV basis... in $\mathbb{C}[U]$

Theorem (MV)

The irreducible components of $\overline{\mathcal{G} r^{\lambda}} \cap S_{-}^{\mu}$ form a basis of cycles-the MV cycles of coweight (λ, μ)-for intersection cohomology of $\overline{\mathcal{G} r^{\lambda}} \cap S_{-}^{\mu}$

MV basis... in $\mathbb{C}[U]$

Theorem (MV)

The irreducible components of $\overline{\mathcal{G r} r^{\lambda}} \cap S_{-}^{\mu}$ form a basis of cycles-the MV cycles of coweight (λ, μ)-for intersection cohomology of $\overline{\mathcal{G} r^{\lambda}} \cap S_{-}^{\mu}$ making it isomorphic to $L(\lambda)_{\mu}$ in representations of the Langlands dual group.

Calibrating: Fix a highest weight vector $v_{\lambda} \in L(\lambda)$,

MV basis... in $\mathbb{C}[U]$

Theorem (MV)

The irreducible components of $\overline{\mathcal{G} r^{\lambda}} \cap S_{-}^{\mu}$ form a basis of cycles-the MV cycles of coweight (λ, μ)-for intersection cohomology of $\overline{\mathcal{G} r^{\lambda}} \cap S_{-}^{\mu}$ making it isomorphic to $L(\lambda)_{\mu}$ in representations of the Langlands dual group.

Calibrating: Fix a highest weight vector $v_{\lambda} \in L(\lambda)$, and use Berenstein and Kazhdan's map $L(\lambda) \rightarrow \mathbb{C}[U]$

$$
f_{v}(u)=v_{\lambda}^{*}(u \cdot v)
$$

MV basis... in $\mathbb{C}[U]$

Theorem (MV)

The irreducible components of $\overline{\mathcal{G r} r^{\lambda}} \cap S_{-}^{\mu}$ form a basis of cycles-the MV cycles of coweight (λ, μ)-for intersection cohomology of $\overline{\mathcal{G} r^{\lambda}} \cap S_{-}^{\mu}$ making it isomorphic to $L(\lambda)_{\mu}$ in representations of the Langlands dual group.

Calibrating: Fix a highest weight vector $v_{\lambda} \in L(\lambda)$, and use Berenstein and Kazhdan's map $L(\lambda) \rightarrow \mathbb{C}[U]$

$$
f_{v}(u)=v_{\lambda}^{*}(u \cdot v)
$$

to make sense of the MV cycles as a basis in $\mathbb{C}[U]$.

MV basis... in $\mathbb{C}[U]$

Theorem (MV)

The irreducible components of $\overline{\mathcal{G} r^{\lambda}} \cap S_{-}^{\mu}$ form a basis of cycles-the MV cycles of coweight (λ, μ)-for intersection cohomology of $\overline{\mathcal{G} r^{\lambda}} \cap S_{-}^{\mu}$ making it isomorphic to $L(\lambda)_{\mu}$ in representations of the Langlands dual group.

Calibrating: Fix a highest weight vector $v_{\lambda} \in L(\lambda)$, and use Berenstein and Kazhdan's map $L(\lambda) \rightarrow \mathbb{C}[U]$

$$
f_{v}(u)=v_{\lambda}^{*}(u \cdot v)
$$

to make sense of the MV cycles as a basis in $\mathbb{C}[U]$. Denote this basis of $\mathbb{C}[u]$ by $\mathcal{B}_{\mathcal{G r}}$ writing $f_{\mathcal{Z}}$ for the avatar of the cycle Z.

Setting up the comparison

Comparing $\mathcal{B}_{\mathcal{G}_{r}}$ and \mathcal{B}_{\wedge}

We can now compare!

$$
\operatorname{Pol}(Y)=\operatorname{Pol}(Z) \stackrel{?}{\Rightarrow} f_{Y}=f_{Z}
$$

Comparing $\mathcal{B}_{\mathcal{G}_{r}}$ and \mathcal{B}_{\wedge}

We can now compare!

$$
\operatorname{Pol}(Y)=\operatorname{Pol}(Z) \stackrel{?}{\Rightarrow} f_{Y}=f_{Z}
$$

Consider the following invariant.

$$
f \in \mathbb{C}[U]_{-\nu} \mapsto \bar{D}(f)=\sum_{\underline{i} \in \operatorname{Seq}(\nu)}\left\langle e_{\underline{\mathrm{i}}}, f\right\rangle \bar{D}_{\underline{i}} \in \mathbb{C}\left[\mathrm{t}^{\mathrm{res}}\right]
$$

where

$$
\bar{D}_{\underline{i}}=\prod_{k=1}^{p} \frac{1}{\alpha_{i_{1}}+\cdots+\alpha_{i_{k}}} \quad p=\sum \nu_{i}
$$

Reinterpeting \bar{D}

Let $f \in \mathbb{C}[U]_{-\nu}$
In case $f=f_{Y}$

$$
\bar{D}(f)=\sum_{\underline{i}} \chi\left(F_{\underline{i}}(M)\right) \bar{D}_{\underline{i}}
$$

for $M \in Y$ general.

Reinterpeting \bar{D}

Let $f \in \mathbb{C}[U]_{-\nu}$
In case $f=f_{Y}$

$$
\bar{D}(f)=\sum_{\underline{i}} \chi\left(F_{\underline{i}}(M)\right) \bar{D}_{\underline{i}}
$$

for $M \in Y$ general.
In case $f=f_{z}$

$$
\bar{D}(f)=\varepsilon_{L_{-\nu}}(Z)
$$

the equivariant multiplicity of Z at its lowest fixed point.

Reinterpeting \bar{D}

Let $f \in \mathbb{C}[U]_{-\nu}$
In case $f=f_{Y}$

$$
\bar{D}(f)=\sum_{\underline{i}} \chi\left(F_{\underline{i}}(M)\right) \bar{D}_{\underline{i}}
$$

for $M \in Y$ general.
In case $f=f_{z}$

$$
\bar{D}(f)=\varepsilon_{L_{-\nu}}(Z)
$$

the equivariant multiplicity of Z at its lowest fixed point.
We direct you to the Baumann, Kamnitzer and Knutson paper for explanations. Esp. the appendix.

Example

BKK had a guess as to a pair (Y, Z) in type A such that $\operatorname{Pol}(Y)=\operatorname{Pol}(Z)$ but $f_{Z} \neq f_{Y}$

Example

BKK had a guess as to a pair (Y, Z) in type A such that $\operatorname{Pol}(Y)=\operatorname{Pol}(Z)$ but $f_{Z} \neq f_{Y}$ and we verified it by checking $\bar{D}\left(f_{Z}\right) \neq \bar{D}\left(f_{Y}\right)$.

Example

BKK had a guess as to a pair (Y, Z) in type A such that $\operatorname{Pol}(Y)=\operatorname{Pol}(Z)$ but $f_{Z} \neq f_{Y}$ and we verified it by checking $\bar{D}\left(f_{Z}\right) \neq \bar{D}\left(f_{Y}\right)$.

To compute $\bar{D}\left(f_{z}\right)$ we need coordinates.

Example

BKK had a guess as to a pair (Y, Z) in type A such that $\operatorname{Pol}(Y)=\operatorname{Pol}(Z)$ but $f_{Z} \neq f_{Y}$ and we verified it by checking $\bar{D}\left(f_{Z}\right) \neq \bar{D}\left(f_{Y}\right)$.

To compute $\bar{D}\left(f_{z}\right)$ we need coordinates. For these we relied on the Mirković-Vybornov isomorphism, and our decomposition.

Means to compute

Mirković-Vybornov isomorphism

In type A, where coweights can be viewed as partitions, the MV isomorphism says that

$$
\overline{\mathcal{G} r^{\lambda}} \cap \mathcal{G} r_{\mu} \cong \overline{\mathbb{O}}_{\lambda} \cap \mathbb{T}_{\mu}
$$

Mirković-Vybornov isomorphism

In type A, where coweights can be viewed as partitions, the MV isomorphism says that

$$
\overline{\mathcal{G} r^{\lambda}} \cap \mathcal{G} r_{\mu} \cong \overline{\mathbb{O}}_{\lambda} \cap \mathbb{T}_{\mu}
$$

where \mathbb{O}_{λ} is the conjugacy class of J_{λ}

Mirković-Vybornov isomorphism

In type A, where coweights can be viewed as partitions, the MV isomorphism says that

$$
\overline{\mathcal{G} r^{\lambda}} \cap \mathcal{G} r_{\mu} \cong \overline{\mathbb{O}}_{\lambda} \cap \mathbb{T}_{\mu}
$$

where \mathbb{O}_{λ} is the conjugacy class of J_{λ} and \mathbb{T}_{μ} is the MV slice through J_{μ}.

Mirković-Vybornov isomorphism

In type A, where coweights can be viewed as partitions, the MV isomorphism says that

$$
\overline{\mathcal{G} r^{\lambda}} \cap \mathcal{G} r_{\mu} \cong \overline{\mathbb{O}}_{\lambda} \cap \mathbb{T}_{\mu}
$$

where \mathbb{O}_{λ} is the conjugacy class of J_{λ} and \mathbb{T}_{μ} is the MV slice through J_{μ}.

We showed that this isomorphism restricts to

$$
\phi: \overline{\mathcal{G} r^{\lambda}} \cap S_{-}^{\mu} \rightarrow \overline{\mathbb{O}}_{\lambda} \cap \mathbb{T}_{\mu} \cap \mathfrak{n}
$$

Mirković-Vybornov isomorphism

In type A, where coweights can be viewed as partitions, the MV isomorphism says that

$$
\overline{\mathcal{G} r^{\lambda}} \cap \mathcal{G} r_{\mu} \cong \overline{\mathbb{O}}_{\lambda} \cap \mathbb{T}_{\mu}
$$

where \mathbb{O}_{λ} is the conjugacy class of J_{λ} and \mathbb{T}_{μ} is the MV slice through J_{μ}.
We showed that this isomorphism restricts to

$$
\phi: \overline{\mathcal{G} r^{\lambda}} \cap S_{-}^{\mu} \rightarrow \overline{\mathbb{O}}_{\lambda} \cap \mathbb{T}_{\mu} \cap \mathfrak{n}
$$

and that the RHS has decomposition

$$
\sqcup_{\tau \in S(\lambda)_{\mu}} X_{\tau} \quad X_{\tau}=\overline{\dot{X}_{\tau}^{\text {top }}}
$$

where

$$
\dot{X}_{\tau}=\left\{A \in \mathbb{T}_{\mu} \cap \mathfrak{n}: A_{\left|\lambda^{(i)}\right|} \in \mathbb{O}_{\lambda^{(i)}} \text { for } 1 \leq i \leq m\right\}
$$

Example

Let $\tau=$| 1 | 2 |
| :--- | :--- |
| 3 | 4 | so $m=4$ and $r=2$. Then $A \in \dot{X}_{\tau}$ takes the form

$$
\left[\begin{array}{llll}
0 & a & b & c \\
0 & 0 & 0 & e \\
0 & 0 & 0 & f \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Example

Let $\tau=$| 1 | 2 |
| :--- | :--- |
| 3 | 4 | so $m=4$ and $r=2$. Then $A \in \dot{X}_{\tau}$ takes the form

$$
\left[\begin{array}{llll}
0 & a & b & c \\
0 & 0 & 0 & e \\
0 & 0 & 0 & f \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
a e+b f=0
$$

Coordinates on MV cycles

Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal.

Coordinates on MV cycles

Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal.

Recall that both $\mathcal{B}_{\mathcal{G r}}$ and \mathcal{B}_{\wedge} have polytopes-the same polytopes!

Coordinates on MV cycles

Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal.

Recall that both $\mathcal{B}_{\mathcal{G r}}$ and \mathcal{B}_{\wedge} have polytopes-the same polytopes! This means that any other model for the crystal which is equivalent to the polytope model will also be common to both bases.

Coordinates on MV cycles

Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal.

Recall that both $\mathcal{B}_{\mathcal{G r}}$ and \mathcal{B}_{\wedge} have polytopes-the same polytopes! This means that any other model for the crystal which is equivalent to the polytope model will also be common to both bases. In particular, they have the same tableaux!

Coordinates on MV cycles

Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal.

Recall that both $\mathcal{B}_{\mathcal{G} r}$ and \mathcal{B}_{\wedge} have polytopes-the same polytopes! This means that any other model for the crystal which is equivalent to the polytope model will also be common to both bases. In particular, they have the same tableaux! To every Y, Z, one can assign $\tau(Y), \tau(Z)$ and $\tau(Y)=\tau(Z)$ iff $\operatorname{Pol}(Z)=\operatorname{Pol}(Z)$.

Coordinates on MV cycles

Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal.

Recall that both $\mathcal{B}_{\mathcal{G} r}$ and \mathcal{B}_{\wedge} have polytopes-the same polytopes!
This means that any other model for the crystal which is equivalent to the polytope model will also be common to both bases. In particular, they have the same tableaux! To every Y, Z, one can assign $\tau(Y), \tau(Z)$ and $\tau(Y)=\tau(Z)$ iff $\operatorname{Pol}(Z)=\operatorname{Pol}(Z)$.

Given an MV cycle Z we showed that we could use its tableau $\tau=\tau(Z)$ to locate the generalized orbital variety that gets sent to an open subset of Z

Coordinates on MV cycles

Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal.

Recall that both $\mathcal{B}_{\mathcal{G r}}$ and \mathcal{B}_{\wedge} have polytopes-the same polytopes!
This means that any other model for the crystal which is equivalent to the polytope model will also be common to both bases. In particular, they have the same tableaux! To every Y, Z, one can assign $\tau(Y), \tau(Z)$ and $\tau(Y)=\tau(Z)$ iff $\operatorname{Pol}(Z)=\operatorname{Pol}(Z)$.
Given an MV cycle Z we showed that we could use its tableau
$\tau=\tau(Z)$ to locate the generalized orbital variety that gets sent to an open subset of Z

$$
\tau=\tau(Z) \Rightarrow \phi\left(X_{\tau}\right) \subset Z
$$

Conclusion

Coordinates on generalized orbital varieties

The generalized orbital varieties quickly get quite complicated, and the ideal of the one needed for BKK's example was unwieldy! But we persevered.

Coordinates on generalized orbital varieties

The generalized orbital varieties quickly get quite complicated, and the ideal of the one needed for BKK's example was unwieldy! But we persevered.

Using the fact that

$$
\varepsilon_{p}(X)=\frac{\operatorname{mdeg}_{W}\left(\grave{X}_{p}\right)}{\operatorname{mdeg}_{W}(W)}
$$

and simply running multidegree in Macaulay2 we found that...

Counterexample

Let (Y, Z) be such that

$$
\tau(Y)=\tau(Z)=\begin{array}{|l|l|l|l|}
\hline 1 & 1 & 5 & 5 \\
\hline 2 & 2 & 6 & 6 \\
\hline 3 & 3 & \\
\hline 4 & 4 & \\
\hline
\end{array}
$$

Counterexample

Let (Y, Z) be such that

$$
\tau(Y)=\tau(Z)=
$$

then X_{τ} is 16 dimensional generated in degrees $1,2,3$, and 6 ,

Counterexample

Let (Y, Z) be such that

$$
\tau(Y)=\tau(Z)=\begin{array}{|l|l|l|l|}
\hline 1 & 1 & 5 & 5 \\
\hline 2 & 2 & 6 & 6 \\
\hline 3 & 3 & \\
\hline 4 & 4 & \\
\hline
\end{array}
$$

then X_{τ} is 16 dimensional generated in degrees $1,2,3$, and 6 , while a general point M of Y is looks like

$$
1_{1}^{1} 2_{1}^{1} 1 \oplus 1_{1}^{1} 2_{1}^{1}
$$

Counterexample

Let (Y, Z) be such that

$$
\tau(Y)=\tau(Z)=\begin{array}{|l|l|l|l|}
\hline 1 & 1 & 5 & 5 \\
\hline 2 & 2 & 6 & 6 \\
\hline 3 & 3 & \\
\cline { 1 - 2 } 4 & 4 & \\
\hline
\end{array}
$$

then X_{τ} is 16 dimensional generated in degrees $1,2,3$, and 6 , while a general point M of Y is looks like

$$
1_{1}^{1} 2_{1}^{1} 1 \oplus 1_{1}^{1} 2_{1}^{1}
$$

Moreover

$$
\sum_{\underline{i}} \chi\left(F_{\underline{i}} M\right) D_{\underline{i}} \neq \frac{\operatorname{mdeg}_{\mathfrak{n}}\left(X_{\tau}\right)}{\operatorname{mdeg}_{\mathfrak{n}}(0)}
$$

Counterexample

Let (Y, Z) be such that

$$
\tau(Y)=\tau(Z)=\begin{array}{|l|l|l|l|}
\hline 1 & 1 & 5 & 5 \\
\hline 2 & 2 & 6 & 6 \\
\hline 3 & 3 & \\
\cline { 1 - 2 } 4 & 4 & \\
\hline
\end{array}
$$

then X_{τ} is 16 dimensional generated in degrees $1,2,3$, and 6 , while a general point M of Y is looks like

$$
1_{1}^{1} 2_{1}^{1} 1 \oplus 1_{1}^{1} 2_{1}^{1} 1
$$

Moreover

$$
\sum_{\underline{i}} \chi\left(F_{\underline{i}} M\right) D_{\underline{i}} \neq \frac{\operatorname{mdeg}_{\mathfrak{n}}\left(X_{\tau}\right)}{\operatorname{mdeg}_{\mathfrak{n}}(0)}
$$

therefore $f_{Y} \neq f_{Z}$.

Counterexample

Let (Y, Z) be such that

$$
\tau(Y)=\tau(Z)=\begin{array}{|l|l|l|l|}
\hline 1 & 1 & 5 & 5 \\
\hline 2 & 2 & 6 & 6 \\
\hline 3 & 3 & \\
\cline { 1 - 2 } 4 & 4 & \\
\hline
\end{array}
$$

then X_{τ} is 16 dimensional generated in degrees $1,2,3$, and 6 , while a general point M of Y is looks like

$$
1_{1}^{1} 2_{1}^{1} 1 \oplus 1_{1}^{1} 2_{1}^{1} 1
$$

Moreover

$$
\sum_{\underline{i}} \chi\left(F_{\underline{i}} M\right) D_{\underline{i}} \neq \frac{\operatorname{mdeg}_{\mathfrak{n}}\left(X_{\tau}\right)}{\operatorname{mdeg}_{\mathfrak{n}}(0)}
$$

therefore $f_{Y} \neq f_{Z}$.

Thank you

Backup slides

$$
\bar{D}(Z)=\bar{D}(Q)-2 \bar{D}(P)
$$

Example

$$
G=S L_{3} \mathbb{C}, w_{0}=S_{1} S_{2} S_{1} \text {, and } U=\left\{\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]\right\} \text {, so that } \mathbb{C}[U]=\mathbb{C}[x, y, z]
$$

Example

$$
\begin{aligned}
& G=S L_{3} \mathbb{C}, w_{0}=S_{1} S_{2} S_{1} \text {, and } U=\left\{\left[\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]\right\} \text {, so that } \mathbb{C}[U]=\mathbb{C}[x, y, z] \\
& n=(1,0,1),
\end{aligned}
$$

Example

$$
\begin{aligned}
& G=S L_{3} \mathbb{C}, w_{0}=S_{1} S_{2} S_{1} \text {, and } U=\left\{\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0
\end{array}\right]\right\} \text {, so that } \mathbb{C}[U]=\mathbb{C}[x, y, z] \\
& n=(1,0,1), \tau=\frac{1}{3}
\end{aligned}
$$

Example

$$
\begin{aligned}
& G=S L_{3} \mathbb{C}, w_{0}=s_{1} s_{2} s_{1} \text {, and } U=\left\{\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 1 & 1
\end{array}\right]\right\} \text {, so that } \mathbb{C}[U]=\mathbb{C}[x, y, z] \\
& n=(1,0,1), \tau=\begin{array}{ll}
1 & 2 \\
3
\end{array} \\
& \alpha_{1}+\alpha_{2} \\
& \quad \alpha_{1} \text { in } \mathfrak{t}_{\mathbb{R}}^{*} \cong \mathbb{R}^{2}
\end{aligned}
$$

Example

$$
\begin{aligned}
& G=S L_{3} \mathbb{C}, w_{0}=s_{1} s_{2} s_{1} \text {, and } U=\left\{\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]\right\} \text {, so that } \mathbb{C}[U]=\mathbb{C}[x, y, z] \\
& n=(1,0,1), \tau=\frac{1}{1} 2 \\
& 3
\end{aligned} \alpha_{1} \begin{aligned}
& \alpha_{1}+\alpha_{2} \\
& \quad \alpha_{1} \text { in } \mathfrak{t}_{\mathbb{R}}^{*} \cong \mathbb{R}^{2} \text { will have "measure" } \frac{1}{\alpha_{1}\left(\alpha_{1}+\alpha_{2}\right)}
\end{aligned}
$$

Example

$$
\begin{aligned}
& G=S L_{3} \mathbb{C}, w_{0}=S_{1} S_{2} S_{1} \text {, and } U=\left\{\left[\begin{array}{ll}
1 & x \\
0 & 1 \\
0 & y \\
0 & 1
\end{array}\right]\right\} \text {, so that } \mathbb{C}[U]=\mathbb{C}[x, y, z] \\
& n=(1,0,1), \tau=\frac{1}{3} 2 \\
& \alpha_{1}+\alpha_{2} \\
& \quad \alpha_{1} \text { in } t_{\mathbb{R}}^{*} \cong \mathbb{R}^{2} \text { will have "measure" } \frac{1}{\alpha_{1}\left(\alpha_{1}+\alpha_{2}\right)} \\
& \overline{\mathcal{G} r \omega_{2}} \cong \mathbb{P}^{2} \text { in } \mathcal{G} r
\end{aligned}
$$

Example

$$
\left.\begin{array}{l}
G=S L_{3} \mathbb{C}, w_{0}=S_{1} S_{2} S_{1} \text {, and } U=\left\{\left[\begin{array}{ll}
1 & x \\
0 & 1 \\
0 & y \\
0 & 0
\end{array}\right]\right\} \text {, so that } \mathbb{C}[U]=\mathbb{C}[x, y, z] \\
n=(1,0,1), \tau=\frac{1}{1} 2 \\
3
\end{array}\right] \begin{aligned}
& \alpha_{1}+\alpha_{2} \\
& \quad \alpha_{1} \text { in } \mathfrak{t}_{\mathbb{R}}^{*} \cong \mathbb{R}^{2} \text { will have "measure" } \frac{1}{\alpha_{1}\left(\alpha_{1}+\alpha_{2}\right)} \\
& \overline{\mathcal{G r} \omega_{2}} \cong \mathbb{P}^{2} \text { in } \mathcal{G} r \text { and the component of } P\left(\omega_{2}\right)=1 \rightarrow 2 \text { in } \Lambda
\end{aligned}
$$

Example

$$
\begin{aligned}
& G=S L_{3} \mathbb{C}, w_{0}=s_{1} s_{2} s_{1} \text {, and } U=\left\{\left[\begin{array}{ccc}
1 & x & z \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right]\right\} \text {, so that } \mathbb{C}[U]=\mathbb{C}[x, y, z] \\
& n=(1,0,1), \tau=\frac{1}{3} 2 \\
& \alpha_{1}+\alpha_{2} \\
& \alpha_{1} \text { in } t_{\mathbb{R}} \cong \mathbb{R}^{2} \text { will have "measure" } \frac{1}{\alpha_{1}\left(\alpha_{1}+\alpha_{2}\right)}
\end{aligned}
$$

$\overline{\mathcal{G r} r \omega_{2}} \cong \mathbb{P}^{2}$ in $\mathcal{G r}$ and the component of $P\left(\omega_{2}\right)=1 \rightarrow 2$ in \wedge will both correspond to $z \in \mathbb{C}[U]$

