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The question

We would like to compare two bases in representations of G = GLm

• the MV basis indexed by varieties Z
• the dual semicanonical basis indexed by varieties Y

Both bases are crystal bases, with common polytope models:

crystal

variety Pol //

btttt

::tttt

polytope

eeKKKKKKKKKK

such that Pol(Z) = Pol(Y) whenever b(Z) = b(Y)

KK: if Pol(Z) = Pol(Y) do associated basis vectors agree…in some
sense?
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The answer

No, we have an example.

But first

1. in what sense?
2. tools (equivariant invariants) used to compare
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Roadmap

1. Recollections

2. Setting up the comparison

3. Means to compute

4. Conclusion
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Recollections



Notation

Let G be an ADE group.

Fix a reduced expression for the longest word
in its Weyl group. (The quantities we’ll consider will depend on it.)

Denote by U a maximal unipotent subgroup. Denote by U the
universal enveloping algebra of its Lie algebra.

Write Π = {αi} for its simple roots, and ei = eαi for associated
Chevalley generators of U .
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Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the
associated preprojective algebra by A.

This is the path algebra mod
the #Π preprojective relations.

Denote by Λ Lusztig’s nilpotent variety of A-module structures on
Π-graded vector spaces.

Given Y ∈ Irr Λ let M ∈ Y be a general point.

Denote the perfect pairing U × C[U]→ C that sends (a, f) to a · f(1)
by ⟨a, f⟩.

If dimM = p then fY ∈ C[U] is defined by the system

⟨ei, fY⟩ = χ(Fi(M)) for all i = (i1, . . . , ip)

where ei = ei1ei2 · · · eip and

Fi(M) = {0 = M0 ⊂ M1 ⊂ · · · ⊂ Mp = M : Mk/Mk−1 ∼= Sik}

Note, C[U] is graded by the positive root cone.
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Example

G = SL3C, Π = {α1, α2}, quiver • h
66 •h̄vv

Λ =
⊕
(ν1,ν2)

{(xh, xh̄) ∈ T
∗ Hom(Cν1 ,Cν2) : xhxh̄ = 0 and xh̄xh = 0}

Connected component of M ∈ Λ having grdimM = α1 + α2 is

{(xh, xh̄) ∈ C2 : xhxh̄ = 0} = {xh = 0} ⊔ {xh̄ = 0}
= {1← 1} ⊔ {1→ 1}
= {z} ⊔ {xy− z} in C[U]

if U =
{[ 1 x z

0 1 y
0 0 1

]}
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Dual semicanonical basis in C[U]

Theorem (GLS)
The elements {fY} as Y ranges in Irr Λ form the dual semicanonical
basis, denoted BΛ.
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The affine Grassmannian

We give the general definition along with the lattice model valid only
in type A.

Let T be a maximal torus. Denote O = C[t] and K = C(t).
Given µ ∈ X•(T), write tµ for its image in G(K) and Lµ for its image in

Gr = G(K)/G(O) A
= {L

free
⊂

rank m
Om : tL ⊂ L}

Example: Lµ = SpanO(eitj : 0 ≤ j < µi). Fact: GrT = X•(T) and other
distinguished subsets (needed for the definition of MV cycles and
later open subset thereof) are all orbits of fixed points

Grλ = G(O)Lλ = {L ∈ Gr : t
∣∣
Om/L has Jordan type λ}

Grµ = G1[t−1]Lµ = {L ∈ Gr : L = SpanO(v1, . . . , vm) such that

vj = tµjej +
∑

pijei with deg pij < µj}

Sµ− = U−(K)Lµ = {L ∈ Grµ : dim(Ok/L ∩ Ok) = µ1 + · · ·+ µk}

8



The affine Grassmannian

We give the general definition along with the lattice model valid only
in type A. Let T be a maximal torus. Denote O = C[t] and K = C(t).

Given µ ∈ X•(T), write tµ for its image in G(K) and Lµ for its image in

Gr = G(K)/G(O) A
= {L

free
⊂

rank m
Om : tL ⊂ L}

Example: Lµ = SpanO(eitj : 0 ≤ j < µi). Fact: GrT = X•(T) and other
distinguished subsets (needed for the definition of MV cycles and
later open subset thereof) are all orbits of fixed points

Grλ = G(O)Lλ = {L ∈ Gr : t
∣∣
Om/L has Jordan type λ}

Grµ = G1[t−1]Lµ = {L ∈ Gr : L = SpanO(v1, . . . , vm) such that

vj = tµjej +
∑

pijei with deg pij < µj}

Sµ− = U−(K)Lµ = {L ∈ Grµ : dim(Ok/L ∩ Ok) = µ1 + · · ·+ µk}

8



The affine Grassmannian

We give the general definition along with the lattice model valid only
in type A. Let T be a maximal torus. Denote O = C[t] and K = C(t).
Given µ ∈ X•(T), write tµ for its image in G(K) and Lµ for its image in

Gr = G(K)/G(O)

A
= {L

free
⊂

rank m
Om : tL ⊂ L}

Example: Lµ = SpanO(eitj : 0 ≤ j < µi). Fact: GrT = X•(T) and other
distinguished subsets (needed for the definition of MV cycles and
later open subset thereof) are all orbits of fixed points

Grλ = G(O)Lλ = {L ∈ Gr : t
∣∣
Om/L has Jordan type λ}

Grµ = G1[t−1]Lµ = {L ∈ Gr : L = SpanO(v1, . . . , vm) such that

vj = tµjej +
∑

pijei with deg pij < µj}

Sµ− = U−(K)Lµ = {L ∈ Grµ : dim(Ok/L ∩ Ok) = µ1 + · · ·+ µk}

8



The affine Grassmannian

We give the general definition along with the lattice model valid only
in type A. Let T be a maximal torus. Denote O = C[t] and K = C(t).
Given µ ∈ X•(T), write tµ for its image in G(K) and Lµ for its image in

Gr = G(K)/G(O) A
= {L

free
⊂

rank m
Om : tL ⊂ L}

Example: Lµ = SpanO(eitj : 0 ≤ j < µi). Fact: GrT = X•(T) and other
distinguished subsets (needed for the definition of MV cycles and
later open subset thereof) are all orbits of fixed points

Grλ = G(O)Lλ = {L ∈ Gr : t
∣∣
Om/L has Jordan type λ}

Grµ = G1[t−1]Lµ = {L ∈ Gr : L = SpanO(v1, . . . , vm) such that

vj = tµjej +
∑

pijei with deg pij < µj}

Sµ− = U−(K)Lµ = {L ∈ Grµ : dim(Ok/L ∩ Ok) = µ1 + · · ·+ µk}

8



The affine Grassmannian

We give the general definition along with the lattice model valid only
in type A. Let T be a maximal torus. Denote O = C[t] and K = C(t).
Given µ ∈ X•(T), write tµ for its image in G(K) and Lµ for its image in

Gr = G(K)/G(O) A
= {L

free
⊂

rank m
Om : tL ⊂ L}

Example: Lµ = SpanO(eitj : 0 ≤ j < µi).

Fact: GrT = X•(T) and other
distinguished subsets (needed for the definition of MV cycles and
later open subset thereof) are all orbits of fixed points

Grλ = G(O)Lλ = {L ∈ Gr : t
∣∣
Om/L has Jordan type λ}

Grµ = G1[t−1]Lµ = {L ∈ Gr : L = SpanO(v1, . . . , vm) such that

vj = tµjej +
∑

pijei with deg pij < µj}

Sµ− = U−(K)Lµ = {L ∈ Grµ : dim(Ok/L ∩ Ok) = µ1 + · · ·+ µk}

8



The affine Grassmannian

We give the general definition along with the lattice model valid only
in type A. Let T be a maximal torus. Denote O = C[t] and K = C(t).
Given µ ∈ X•(T), write tµ for its image in G(K) and Lµ for its image in

Gr = G(K)/G(O) A
= {L

free
⊂

rank m
Om : tL ⊂ L}

Example: Lµ = SpanO(eitj : 0 ≤ j < µi). Fact: GrT = X•(T)

and other
distinguished subsets (needed for the definition of MV cycles and
later open subset thereof) are all orbits of fixed points

Grλ = G(O)Lλ = {L ∈ Gr : t
∣∣
Om/L has Jordan type λ}

Grµ = G1[t−1]Lµ = {L ∈ Gr : L = SpanO(v1, . . . , vm) such that

vj = tµjej +
∑

pijei with deg pij < µj}

Sµ− = U−(K)Lµ = {L ∈ Grµ : dim(Ok/L ∩ Ok) = µ1 + · · ·+ µk}

8



The affine Grassmannian

We give the general definition along with the lattice model valid only
in type A. Let T be a maximal torus. Denote O = C[t] and K = C(t).
Given µ ∈ X•(T), write tµ for its image in G(K) and Lµ for its image in

Gr = G(K)/G(O) A
= {L

free
⊂

rank m
Om : tL ⊂ L}

Example: Lµ = SpanO(eitj : 0 ≤ j < µi). Fact: GrT = X•(T) and other
distinguished subsets (needed for the definition of MV cycles and
later open subset thereof) are all orbits of fixed points

Grλ = G(O)Lλ = {L ∈ Gr : t
∣∣
Om/L has Jordan type λ}

Grµ = G1[t−1]Lµ = {L ∈ Gr : L = SpanO(v1, . . . , vm) such that

vj = tµjej +
∑

pijei with deg pij < µj}

Sµ− = U−(K)Lµ = {L ∈ Grµ : dim(Ok/L ∩ Ok) = µ1 + · · ·+ µk}

8



The affine Grassmannian

We give the general definition along with the lattice model valid only
in type A. Let T be a maximal torus. Denote O = C[t] and K = C(t).
Given µ ∈ X•(T), write tµ for its image in G(K) and Lµ for its image in

Gr = G(K)/G(O) A
= {L

free
⊂

rank m
Om : tL ⊂ L}

Example: Lµ = SpanO(eitj : 0 ≤ j < µi). Fact: GrT = X•(T) and other
distinguished subsets (needed for the definition of MV cycles and
later open subset thereof) are all orbits of fixed points

Grλ = G(O)Lλ = {L ∈ Gr : t
∣∣
Om/L has Jordan type λ}

Grµ = G1[t−1]Lµ = {L ∈ Gr : L = SpanO(v1, . . . , vm) such that

vj = tµjej +
∑

pijei with deg pij < µj}

Sµ− = U−(K)Lµ = {L ∈ Grµ : dim(Ok/L ∩ Ok) = µ1 + · · ·+ µk}
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MV basis… in C[U]

Theorem (MV)
The irreducible components of Grλ ∩ Sµ− form a basis of cycles—the
MV cycles of coweight (λ, µ)—for intersection cohomology of
Grλ ∩ Sµ−

making it isomorphic to L(λ)µ in representations of the
Langlands dual group.

Calibrating: Fix a highest weight vector vλ ∈ L(λ), and use Berenstein
and Kazhdan’s map L(λ)→ C[U]

fv(u) = v∗λ(u · v)

to make sense of the MV cycles as a basis in C[U]. Denote this basis
of C[u] by BGr writing fZ for the avatar of the cycle Z.
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Setting up the comparison



Comparing BGr and BΛ

We can now compare!

Pol(Y) = Pol(Z) ?⇒ fY = fZ

Consider the following invariant.

f ∈ C[U]−ν 7→ D(f) =
∑

i∈Seq(ν)

⟨ei, f⟩Di ∈ C[treg]

where

Di =
p∏
k=1

1
αi1 + · · ·+ αik

p =
∑

νi

10



Comparing BGr and BΛ

We can now compare!

Pol(Y) = Pol(Z) ?⇒ fY = fZ

Consider the following invariant.

f ∈ C[U]−ν 7→ D(f) =
∑

i∈Seq(ν)

⟨ei, f⟩Di ∈ C[treg]

where

Di =
p∏
k=1

1
αi1 + · · ·+ αik

p =
∑

νi

10



Reinterpeting D

Let f ∈ C[U]−ν

In case f = fY
D(f) =

∑
i
χ(Fi(M))Di

for M ∈ Y general.

In case f = fZ
D(f) = εL−ν

(Z)

the equivariant multiplicity of Z at its lowest fixed point.

We direct you to the Baumann, Kamnitzer and Knutson paper for
explanations. Esp. the appendix.
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Example

BKK had a guess as to a pair (Y, Z) in type A such that Pol(Y) = Pol(Z)
but fZ ̸= fY

and we verified it by checking D(fZ) ̸= D(fY).

To compute D(fZ) we need coordinates. For these we relied on the
Mirković–Vybornov isomorphism, and our decomposition.
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Means to compute



Mirković–Vybornov isomorphism

In type A, where coweights can be viewed as partitions, the MV
isomorphism says that

Grλ ∩ Grµ ∼= Oλ ∩ Tµ

where Oλ is the conjugacy class of Jλ and Tµ is the MV slice through
Jµ.

We showed that this isomorphism restricts to

ϕ : Grλ ∩ Sµ− → Oλ ∩ Tµ ∩ n

and that the RHS has decomposition

⊔τ∈S(λ)µXτ Xτ = X̊topτ

where
X̊τ =

{
A ∈ Tµ ∩ n : A|λ(i)| ∈ Oλ(i) for 1 ≤ i ≤ m

}

13



Mirković–Vybornov isomorphism

In type A, where coweights can be viewed as partitions, the MV
isomorphism says that

Grλ ∩ Grµ ∼= Oλ ∩ Tµ

where Oλ is the conjugacy class of Jλ

and Tµ is the MV slice through
Jµ.

We showed that this isomorphism restricts to

ϕ : Grλ ∩ Sµ− → Oλ ∩ Tµ ∩ n

and that the RHS has decomposition

⊔τ∈S(λ)µXτ Xτ = X̊topτ

where
X̊τ =

{
A ∈ Tµ ∩ n : A|λ(i)| ∈ Oλ(i) for 1 ≤ i ≤ m

}

13



Mirković–Vybornov isomorphism

In type A, where coweights can be viewed as partitions, the MV
isomorphism says that

Grλ ∩ Grµ ∼= Oλ ∩ Tµ

where Oλ is the conjugacy class of Jλ and Tµ is the MV slice through
Jµ.

We showed that this isomorphism restricts to

ϕ : Grλ ∩ Sµ− → Oλ ∩ Tµ ∩ n

and that the RHS has decomposition

⊔τ∈S(λ)µXτ Xτ = X̊topτ

where
X̊τ =

{
A ∈ Tµ ∩ n : A|λ(i)| ∈ Oλ(i) for 1 ≤ i ≤ m

}

13



Mirković–Vybornov isomorphism

In type A, where coweights can be viewed as partitions, the MV
isomorphism says that

Grλ ∩ Grµ ∼= Oλ ∩ Tµ

where Oλ is the conjugacy class of Jλ and Tµ is the MV slice through
Jµ.

We showed that this isomorphism restricts to

ϕ : Grλ ∩ Sµ− → Oλ ∩ Tµ ∩ n

and that the RHS has decomposition

⊔τ∈S(λ)µXτ Xτ = X̊topτ

where
X̊τ =

{
A ∈ Tµ ∩ n : A|λ(i)| ∈ Oλ(i) for 1 ≤ i ≤ m

}

13



Mirković–Vybornov isomorphism

In type A, where coweights can be viewed as partitions, the MV
isomorphism says that

Grλ ∩ Grµ ∼= Oλ ∩ Tµ

where Oλ is the conjugacy class of Jλ and Tµ is the MV slice through
Jµ.

We showed that this isomorphism restricts to

ϕ : Grλ ∩ Sµ− → Oλ ∩ Tµ ∩ n

and that the RHS has decomposition

⊔τ∈S(λ)µXτ Xτ = X̊topτ

where
X̊τ =

{
A ∈ Tµ ∩ n : A|λ(i)| ∈ Oλ(i) for 1 ≤ i ≤ m

}
13



Example

Let τ = 1 2
3 4 so m = 4 and r = 2. Then A ∈ X̊τ takes the form


0 a b c
0 0 0 e
0 0 0 f
0 0 0 0



ae+ bf = 0
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Coordinates on MV cycles

Interesting in its own right, the above decomposition turns out to
reveal a use for the tableaux model of the abstract crystal.

Recall that both BGr and BΛ have polytopes—the same polytopes!
This means that any other model for the crystal which is equivalent
to the polytope model will also be common to both bases. In
particular, they have the same tableaux! To every Y, Z, one can assign
τ(Y), τ(Z) and τ(Y) = τ(Z) iff Pol(Z) = Pol(Z).

Given an MV cycle Z we showed that we could use its tableau
τ = τ(Z) to locate the generalized orbital variety that gets sent to an
open subset of Z

τ = τ(Z)⇒ ϕ(Xτ ) ⊂ Z
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Conclusion



Coordinates on generalized orbital varieties

The generalized orbital varieties quickly get quite complicated, and
the ideal of the one needed for BKK’s example was unwieldy! But we
persevered.

Using the fact that

εp(X) =
mdegW(̊Xp)
mdegW(W)

and simply running multidegree in Macaulay2 we found that…
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Counterexample

Let (Y, Z) be such that

τ(Y) = τ(Z) =
1 1 5 5
2 2 6 6
3 3
4 4

then Xτ is 16 dimensional generated in degrees 1,2,3, and 6, while a
general point M of Y is looks like

1 1
1 2 1
1 1

⊕ 1 1
1 2 1
1 1

Moreover ∑
i
χ(FiM)Di ̸=

mdegn(Xτ )
mdegn(0)

therefore fY ̸= fZ.
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Thank you
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Backup slides

D(Z) = D(Q)− 2D(P)



Example

G = SL3C, w0 = s1s2s1, and U =
{[ 1 x z

0 1 y
0 0 1

]}
, so that C[U] = C[x, y, z]

n = (1, 0, 1), τ = 1 2
3

α1

α1 + α2

in t∗R
∼= R2 will have “measure” 1

α1(α1+α2)

Grω2 ∼= P2 in Gr and the component of P(ω2) = 1→ 2 in Λ will both
correspond to z ∈ C[U]
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