Measuring bases

Anne Dranowski
February 5, 2020

UC Davis Algebraic Geometry
The question

We would like to compare two bases in representations of $G = GL_m$.
The question

We would like to compare two bases in representations of $G = GL_m$

- the **MV basis**
We would like to compare two bases in representations of $G = GL_m$

- the MV basis indexed by varieties Z
We would like to *compare* two bases in representations of $G = GL_m$

- *the MV basis* indexed by varieties Z
- *the dual semicanonical basis*
We would like to compare two bases in representations of $G = GL_m$

- the MV basis indexed by varieties Z
- the dual semicanonical basis indexed by varieties Y
The question

We would like to compare two bases in representations of \(G = GL_m \):

- the MV basis indexed by varieties \(Z \)
- the dual semicanonical basis indexed by varieties \(Y \)

Both bases are crystal bases,
We would like to *compare* two bases in representations of $G = GL_m$

- *the MV basis* indexed by varieties Z
- *the dual semicanonical basis* indexed by varieties Y

Both bases are crystal bases, with common polytope models:
We would like to compare two bases in representations of $G = GL_m$

- the **MV basis** indexed by varieties Z
- the **dual semicanonical basis** indexed by varieties Y

Both bases are crystal bases, with common polytope models:

```
crystal
 b
variety Pol polytope
```

such that $\text{Pol}(Z) = \text{Pol}(Y)$ whenever $b(Z) = b(Y)$
The question

We would like to compare two bases in representations of \(G = GL_m \)

- the \textit{MV basis} indexed by varieties \(Z \)
- the \textit{dual semicanonical basis} indexed by varieties \(Y \)

Both bases are crystal bases, with common polytope models:

\[
\begin{align*}
\text{crystal} & \quad \xrightarrow{b} \\
\text{variety} & \quad \xrightarrow{\text{Pol}} \\
\text{polytope} & \quad \xrightarrow{b}
\end{align*}
\]

such that \(\text{Pol}(Z) = \text{Pol}(Y) \) whenever \(b(Z) = b(Y) \)

\(KK: \) \textit{if} \(\text{Pol}(Z) = \text{Pol}(Y) \) \textit{do associated basis vectors agree...in some sense?} \)
The answer

No, we have an example.
The answer

No, we have an example.

But first

1. *in what sense?*
No, we have an example.

But first

1. *in what sense?*
2. *tools (equivariant invariants) used to compare*
Roadmap

1. Recollections
2. Setting up the comparison
3. Means to compute
4. Conclusion
Recollections
Let G be an ADE group.
Let G be an ADE group. Fix a reduced expression for the longest word in its Weyl group. (The quantities we’ll consider will depend on it.)
Let G be an ADE group. Fix a reduced expression for the longest word in its Weyl group. (The quantities we’ll consider will depend on it.) Denote by U a maximal unipotent subgroup.
Let G be an ADE group. Fix a reduced expression for the longest word in its Weyl group. (The quantities we’ll consider will depend on it.) Denote by U a maximal unipotent subgroup. Denote by \mathcal{U} the universal enveloping algebra of its Lie algebra.
Let G be an ADE group. Fix a reduced expression for the longest word in its Weyl group. (The quantities we’ll consider will depend on it.)

Denote by U a maximal unipotent subgroup. Denote by \mathcal{U} the universal enveloping algebra of its Lie algebra.

Write $\Pi = \{\alpha_i\}$ for its simple roots,
Notation

Let G be an ADE group. Fix a reduced expression for the longest word in its Weyl group. (The quantities we’ll consider will depend on it.)

Denote by U a maximal unipotent subgroup. Denote by \mathcal{U} the universal enveloping algebra of its Lie algebra.

Write $\Pi = \{\alpha_i\}$ for its simple roots, and $e_i = e_{\alpha_i}$ for associated Chevalley generators of \mathcal{U}.
Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}.
Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the $\#\Pi$ preprojective relations.
Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the $\#\Pi$ preprojective relations.

Denote by Λ Lusztig’s nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.
Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the $\# \Pi$ preprojective relations.

Denote by Λ Lusztig’s nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.

Given $Y \in \text{Irr} \Lambda$ let $M \in Y$ be a general point.
Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the $\#\Pi$ preprojective relations.

Denote by Λ Lusztig’s nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.

Given $Y \in \text{Irr } \Lambda$ let $M \in Y$ be a general point.

Denote the perfect pairing $\mathcal{U} \times \mathbb{C}[\mathcal{U}] \to \mathbb{C}$ that sends (a,f) to $a \cdot f(1)$ by $\langle a,f \rangle$.
Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the $\# \Pi$ preprojective relations.

Denote by Λ Lusztig’s nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.

Given $Y \in \text{Irr} \Lambda$ let $M \in Y$ be a general point.

Denote the perfect pairing $\mathcal{U} \times \mathbb{C}[U] \to \mathbb{C}$ that sends (a, f) to $a \cdot f(1)$ by $\langle a, f \rangle$.

If $\dim M = p$
Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the $\#\Pi$ preprojective relations.

Denote by Λ Lusztig’s nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.

Given $Y \in \text{Irr} \Lambda$ let $M \in Y$ be a general point.

Denote the perfect pairing $\mathcal{U} \times \mathbb{C}[\mathcal{U}] \to \mathbb{C}$ that sends (a, f) to $a \cdot f(1)$ by $\langle a, f \rangle$.

If $\dim M = p$ then $f_Y \in \mathbb{C}[\mathcal{U}]$ is defined by the system

$$\langle e_i, f_Y \rangle = \chi(F_i(M)) \text{ for all } i = (i_1, \ldots, i_p)$$
Dual semicanonical basis

Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the $\#\Pi$ preprojective relations.

Denote by Λ Lusztig’s nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.

Given $Y \in \text{Irr} \Lambda$ let $M \in Y$ be a general point.

Denote the perfect pairing $\mathcal{U} \times \mathbb{C}[\mathcal{U}] \to \mathbb{C}$ that sends (a,f) to $a \cdot f(1)$ by $\langle a,f \rangle$.

If \(\text{dim} \ M = p \) then $f_Y \in \mathbb{C}[\mathcal{U}]$ is defined by the system

$$\langle e_{i}, f_Y \rangle = \chi(F_{i}(M)) \text{ for all } i = (i_1, \ldots, i_p)$$

where $e_{i} = e_{i_1} e_{i_2} \cdots e_{i_p}$ and

$$F_{i}(M) = \{ 0 = M^0 \subset M^1 \subset \cdots \subset M^p = M : M^k / M^{k-1} \cong S_{i_k} \}$$
Double the simply laced Dynkin quiver of G and denote the associated preprojective algebra by \mathcal{A}. This is the path algebra mod the $\#\Pi$ preprojective relations.

Denote by Λ Lusztig’s nilpotent variety of \mathcal{A}-module structures on Π-graded vector spaces.

Given $Y \in \text{Irr} \Lambda$ let $M \in Y$ be a general point.

Denote the perfect pairing $U \times \mathbb{C}[U] \to \mathbb{C}$ that sends (a, f) to $a \cdot f(1)$ by $\langle a, f \rangle$.

If $\dim M = p$ then $f_Y \in \mathbb{C}[U]$ is defined by the system

$$\langle e_{\hat{i}}, f_Y \rangle = \chi(F_{\hat{i}}(M)) \text{ for all } \hat{i} = (i_1, \ldots, i_p)$$

where $e_{\hat{i}} = e_{i_1} e_{i_2} \cdots e_{i_p}$ and

$$F_{\hat{i}}(M) = \{0 = M^0 \subset M^1 \subset \cdots \subset M^p = M : M^k / M^{k-1} \cong S_{i_k} \}$$

Note, $\mathbb{C}[U]$ is graded by the positive root cone.
$G = SL_3 \mathbb{C}$, $\Pi = \{\alpha_1, \alpha_2\}$, quiver

\[
\Lambda = \bigoplus_{(\nu_1, \nu_2)} \{(x_h, x_{\bar{h}}) \in T^* \text{Hom}(\mathbb{C}^{\nu_1}, \mathbb{C}^{\nu_2}) : x_h x_{\bar{h}} = 0 \text{ and } x_{\bar{h}} x_h = 0\}
\]
Example

\[G = SL_3 \mathbb{C}, \Pi = \{\alpha_1, \alpha_2\}, \text{quiver } \bullet \xrightarrow{\bar{f}} \bullet \]

\[\Lambda = \bigoplus_{(\nu_1, \nu_2)} \{(x_h, x_{\bar{h}}) \in T^* \text{Hom}(\mathbb{C}^{\nu_1}, \mathbb{C}^{\nu_2}) : x_h x_{\bar{h}} = 0 \text{ and } x_{\bar{h}} x_h = 0\} \]

Connected component of \(M \in \Lambda \) having \(\text{grdim } M = \alpha_1 + \alpha_2 \) is

\[\{(x_h, x_{\bar{h}}) \in \mathbb{C}^2 : x_h x_{\bar{h}} = 0\} = \{x_h = 0\} \sqcup \{x_{\bar{h}} = 0\} \]
Example

\[G = SL_3 \mathbb{C}, \Pi = \{\alpha_1, \alpha_2\}, \text{quiver} \]

\[\Lambda = \bigoplus_{(\nu_1, \nu_2)} \{(x_h, x_{\bar{h}}) \in T^* \text{Hom}(\mathbb{C}^{\nu_1}, \mathbb{C}^{\nu_2}) : x_h x_{\bar{h}} = 0 \text{ and } x_{\bar{h}} x_h = 0\} \]

Connected component of \(M \in \Lambda \) having \(\text{grdim} M = \alpha_1 + \alpha_2 \) is

\[\{(x_h, x_{\bar{h}}) \in \mathbb{C}^2 : x_h x_{\bar{h}} = 0\} = \{x_h = 0\} \sqcup \{x_{\bar{h}} = 0\} \]

\[= \{1 \leftarrow 1\} \sqcup \{1 \rightarrow 1\} \]
Example

\[G = \text{SL}_3 \mathbb{C}, \, \Pi = \{\alpha_1, \alpha_2\}, \text{quiver } \bullet \xrightarrow{\varphi} \bullet \]

\[\Lambda = \bigoplus_{(\nu_1, \nu_2)} \{(x_h, x_{\bar{h}}) \in T^* \text{Hom}(\mathbb{C}^{\nu_1}, \mathbb{C}^{\nu_2}) : x_h x_{\bar{h}} = 0 \text{ and } x_{\bar{h}} x_h = 0\} \]

Connected component of \(M \in \Lambda \) having \(\text{grdim} M = \alpha_1 + \alpha_2 \) is

\[\{(x_h, x_{\bar{h}}) \in \mathbb{C}^2 : x_h x_{\bar{h}} = 0\} = \{x_h = 0\} \sqcup \{x_{\bar{h}} = 0\} \]

\[= \{1 \leftarrow 1\} \sqcup \{1 \rightarrow 1\} \]

\[= \{z\} \sqcup \{xy - z\} \text{ in } \mathbb{C}[U] \]
Example

\[G = SL_3\mathbb{C}, \Pi = \{\alpha_1, \alpha_2\}, \text{quiver} \]

\[\Lambda = \bigoplus_{(\nu_1,\nu_2)} \{ (x_h, x_{\bar{h}}) \in T^* \text{Hom}(\mathbb{C}^{\nu_1}, \mathbb{C}^{\nu_2}) : x_h x_{\bar{h}} = 0 \text{ and } x_{\bar{h}} x_h = 0 \} \]

Connected component of \(M \in \Lambda \) having \(\text{grdim} M = \alpha_1 + \alpha_2 \) is

\[\{ (x_h, x_{\bar{h}}) \in \mathbb{C}^2 : x_h x_{\bar{h}} = 0 \} = \{ x_h = 0 \} \sqcup \{ x_{\bar{h}} = 0 \} = \{ 1 \leftarrow 1 \} \sqcup \{ 1 \rightarrow 1 \} = \{ z \} \sqcup \{ xy - z \} \text{ in } \mathbb{C}[U] \]

if \(U = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \right\} \)
Theorem (GLS)
The elements \(\{f_Y\} \) as \(Y \) ranges in \(\text{Irr} \Lambda \) form the dual semicanonical basis, denoted \(\mathcal{B}_\Lambda \).
We give the general definition along with the lattice model valid only in type A.
We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O} = \mathbb{C}[t]$ and $\mathcal{K} = \mathbb{C}(t)$.

We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O} = \mathbb{C}[t]$ and $\mathcal{K} = \mathbb{C}(t)$. Given $\mu \in X^\bullet(T)$, write t^μ for its image in $G(\mathcal{K})$ and L_μ for its image in $G_{\mathcal{K}} = G(\mathcal{K})/G(\mathcal{O})$.

$$G_{\mathcal{K}} = G(\mathcal{K})/G(\mathcal{O})$$
The affine Grassmannian

We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O} = \mathbb{C}[t]$ and $\mathcal{K} = \mathbb{C}(t)$. Given $\mu \in X^\bullet(T)$, write t^μ for its image in $G(\mathcal{K})$ and L_μ for its image in $G(\mathcal{O})$.

$$\mathcal{G}r = G(\mathcal{K})/G(\mathcal{O}) \overset{A}{=} \left\{ L \mathrel{\overset{\text{free}}{\subset}} \mathcal{O}^m : tL \subset L \right\}$$
We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O} = \mathbb{C}[t]$ and $\mathcal{K} = \mathbb{C}(t)$. Given $\mu \in X^\bullet(T)$, write t^μ for its image in $G(\mathcal{K})$ and L_μ for its image in $\mathcal{K}^r = G(\mathcal{O})$.

$$\mathcal{G}r = G(\mathcal{K})/G(\mathcal{O}) \overset{A}{=} \{ L \underset{\text{free}}{\subset} \mathcal{O}^m : tL \subset L \}$$

Example: $L_\mu = \text{Span}_{\mathcal{O}}(e_i t^j : 0 \leq j < \mu_i)$.
The affine Grassmannian

We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O} = \mathbb{C}[t]$ and $\mathcal{K} = \mathbb{C}(t)$. Given $\mu \in X^\bullet(T)$, write t^μ for its image in $G(\mathcal{K})$ and L_μ for its image in

$$Gr = G(\mathcal{K})/G(\mathcal{O})_A = \{ L \subset \mathcal{O}^m : tL \subset L \}$$

Example: $L_\mu = \text{Span}_\mathcal{O}(e_it^j : 0 \leq j < \mu_i)$. Fact: $Gr^T = X^\bullet(T)$
The affine Grassmannian

We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O} = \mathbb{C}[t]$ and $\mathcal{K} = \mathbb{C}(t)$. Given $\mu \in X^\bullet(T)$, write t^μ for its image in $G(\mathcal{K})$ and L_μ for its image in $G(\mathcal{O})$.

$$Gr = G(\mathcal{K})/G(\mathcal{O}) \cong \{ L \bigcup_{\text{free}}^{\text{rank } m} \mathcal{O}^m : tL \subseteq L \}$$

Example: $L_\mu = \text{Span}_\mathcal{O}(e_i t^j : 0 \leq j < \mu_i)$. Fact: $Gr^T = X^\bullet(T)$ and other distinguished subsets (needed for the definition of MV cycles and later open subset thereof) are all orbits of fixed points.
The affine Grassmannian

We give the general definition along with the lattice model valid only in type A. Let T be a maximal torus. Denote $\mathcal{O} = \mathbb{C}[t]$ and $\mathcal{K} = \mathbb{C}(t)$. Given $\mu \in X^\bullet(T)$, write t^μ for its image in $G(\mathcal{K})$ and L_μ for its image in

$$Gr = G(\mathcal{K})/G(\mathcal{O}) \overset{A}{=} \{ L \overset{\text{free}}{\subset} \mathcal{O}^m : tL \subset L \}$$

Example: $L_\mu = \text{Span}_\mathcal{O}(e_i t^j : 0 \leq j < \mu_i)$. Fact: $Gr^T = X^\bullet(T)$ and other distinguished subsets (needed for the definition of MV cycles and later open subset thereof) are all orbits of fixed points

$$Gr^\lambda = G(\mathcal{O})L_\lambda = \{ L \in Gr : t|_{\mathcal{O}^m/L} \text{ has Jordan type } \lambda \}$$

$$Gr_\mu = G_1[t^{-1}]L_\mu = \{ L \in Gr : L = \text{Span}_\mathcal{O}(v_1, \ldots, v_m) \text{ such that } v_j = t^{\mu_j}e_j + \sum p_{ij}e_i \text{ with } \deg p_{ij} < \mu_j \}$$

$$S^\mu_- = U_-(\mathcal{K})L_\mu = \{ L \in Gr_\mu : \dim(\mathcal{O}^k/L \cap \mathcal{O}^k) = \mu_1 + \cdots + \mu_k \}$$
Theorem (MV)

The irreducible components of $\overline{Gr}^\lambda \cap S^\mu$ form a basis of cycles—the MV cycles of coweight (λ, μ)—for intersection cohomology of $\overline{Gr}^\lambda \cap S^\mu$.

Calibrating: Fix a highest weight vector $v \in L(\lambda)$, and use Berenstein and Kazhdan's map $L(\lambda) \rightarrow \mathbb{C}[U]$ to make sense of the MV cycles as a basis in $\mathbb{C}[U]$. Denote this basis of $\mathbb{C}[U]$ by B_{Gr^λ}. Writing f_Z for the avatar of the cycle Z.

MV basis... in $\mathbb{C}[U]$
Theorem (MV)

The irreducible components of $\overline{Gr}^\lambda \cap S^\mu$ form a basis of cycles—the MV cycles of coweight (λ, μ)—for intersection cohomology of $\overline{Gr}^\lambda \cap S^\mu$ making it isomorphic to $L(\lambda)_{\mu}$ in representations of the Langlands dual group.

Calibrating: Fix a highest weight vector $v_\lambda \in L(\lambda)$,
Theorem (MV)

The irreducible components of \(\overline{Gr}^\lambda \cap S^\mu \) form a basis of cycles—the MV cycles of coweight \((\lambda, \mu)\)—for intersection cohomology of \(\overline{Gr}^\lambda \cap S^\mu \) making it isomorphic to \(L(\lambda)_\mu \) in representations of the Langlands dual group.

Calibrating: Fix a highest weight vector \(v_\lambda \in L(\lambda) \), and use Berenstein and Kazhdan’s map \(L(\lambda) \to \mathbb{C}[U] \)

\[
f_\lambda(u) = v_\lambda^*(u \cdot v)
\]
Theorem (MV)

The irreducible components of $\overline{Gr^\lambda} \cap S^\mu$ form a basis of cycles—the MV cycles of coweight (λ, μ)—for intersection cohomology of $\overline{Gr^\lambda} \cap S^\mu$ making it isomorphic to $L(\lambda)_\mu$ in representations of the Langlands dual group.

Calibrating: Fix a highest weight vector $v_\lambda \in L(\lambda)$, and use Berenstein and Kazhdan’s map $L(\lambda) \to \mathbb{C}[U]$

\[f_v(u) = v^*_\lambda(u \cdot v) \]

to make sense of the MV cycles as a basis in $\mathbb{C}[U]$.
Theorem (MV)

The irreducible components of $\overline{Gr}^{\lambda} \cap S^\mu_-$ form a basis of cycles—the MV cycles of coweight (λ, μ)—for intersection cohomology of $\overline{Gr}^{\lambda} \cap S^\mu_-$ making it isomorphic to $L(\lambda) \mu$ in representations of the Langlands dual group.

Calibrating: Fix a highest weight vector $v_\lambda \in L(\lambda)$, and use Berenstein and Kazhdan’s map $L(\lambda) \to \mathbb{C}[U]

\[f_v(u) = v_\lambda^*(u \cdot v) \]

to make sense of the MV cycles as a basis in $\mathbb{C}[U]$. Denote this basis of $\mathbb{C}[u]$ by B_{Gr} writing f_Z for the avatar of the cycle Z.
Setting up the comparison
Comparing \mathcal{B}_{gr} and \mathcal{B}_Λ

We can now compare!

$$\text{Pol}(Y) = \text{Pol}(Z) \Rightarrow f_Y = f_Z$$
Comparing \mathcal{B}_{gr} and \mathcal{B}_Λ

We can now compare!

$$\text{Pol}(Y) = \text{Pol}(Z) \implies f_Y = f_Z$$

Consider the following invariant.

$$f \in \mathbb{C}[U]_{-\nu} \mapsto \overline{D}(f) = \sum_{i \in \text{Seq}(\nu)} \langle e_i, f \rangle \overline{D}_i \in \mathbb{C}[t^{\text{reg}}]$$

where

$$\overline{D}_i = \prod_{k=1}^{p} \frac{1}{\alpha_{i_1} + \cdots + \alpha_{i_k}} \quad p = \sum \nu_i$$
Reinterpreting \bar{D}

Let $f \in \mathbb{C}[U]_{-\nu}$

In case $f = f_Y$

$$\bar{D}(f) = \sum_i \chi(F_i(M))D_i$$

for $M \in Y$ general.
Reinterpreting \overline{D}

Let $f \in \mathbb{C}[U]_{-\nu}$

In case $f = f_Y$

$$\overline{D}(f) = \sum_i \chi(F_i(M))\overline{D}_i$$

for $M \in Y$ general.

In case $f = f_Z$

$$\overline{D}(f) = \varepsilon_{L_{-\nu}}(Z)$$

the equivariant multiplicity of Z at its lowest fixed point.
Reinterpreting \overline{D}

Let $f \in \mathbb{C}[U]_{-\nu}$

In case $f = f_Y$

$$\overline{D}(f) = \sum_{i} \chi(F_i(M)) \overline{D}_i$$

for $M \in Y$ general.

In case $f = f_Z$

$$\overline{D}(f) = \varepsilon_{L_{-\nu}}(Z)$$

the equivariant multiplicity of Z at its lowest fixed point.

We direct you to the Baumann, Kamnitzer and Knutson paper for explanations. Esp. the appendix.
BKK had a guess as to a pair \((Y, Z)\) in type \(A\) such that \(\text{Pol}(Y) = \text{Pol}(Z)\) but \(f_Z \neq f_Y\).
BKK had a guess as to a pair \((Y, Z)\) in type A such that \(\text{Pol}(Y) = \text{Pol}(Z)\) but \(f_Z \neq f_Y\) and we verified it by checking \(\overline{D}(f_Z) \neq \overline{D}(f_Y)\).
Example

BKK had a guess as to a pair \((Y, Z)\) in type \(A\) such that \(\text{Pol}(Y) = \text{Pol}(Z)\) but \(f_Z \neq f_Y\) and we verified it by checking \(\overline{D}(f_Z) \neq \overline{D}(f_Y)\).

To compute \(\overline{D}(f_Z)\) we need coordinates.
Example

BKK had a guess as to a pair \((Y, Z)\) in type \(A\) such that \(\text{Pol}(Y) = \text{Pol}(Z)\) but \(f_Z \neq f_Y\) and we verified it by checking \(\overline{D}(f_Z) \neq \overline{D}(f_Y)\).

To compute \(\overline{D}(f_Z)\) we need coordinates. For these we relied on the Mirković–Vybornov isomorphism, and our decomposition.
Means to compute
In type A, where coweights can be viewed as partitions, the MV isomorphism says that

$$Gr^\lambda \cap Gr_\mu \cong \mathcal{O}_\lambda \cap T_\mu$$
In type A, where coweights can be viewed as partitions, the MV isomorphism says that

$$\overline{\text{Gr}}^\lambda \cap \text{Gr}_\mu \cong \overline{\text{O}}_\lambda \cap T_\mu$$

where $\overline{\text{O}}_\lambda$ is the conjugacy class of J_λ.
Mirković–Vybornov isomorphism

In type A, where coweights can be viewed as partitions, the MV isomorphism says that

$$\overline{\text{Gr}}^\lambda \cap \text{Gr}_\mu \cong \overline{O}_\lambda \cap \mathbb{T}_\mu$$

where \overline{O}_λ is the conjugacy class of J_λ and \mathbb{T}_μ is the MV slice through J_μ.
Mirković–Vybornov isomorphism

In type A, where coweights can be viewed as partitions, the MV isomorphism says that

$$\overline{Gr^\lambda} \cap Gr_\mu \cong \overline{O}_\lambda \cap T_\mu$$

where \overline{O}_λ is the conjugacy class of J_λ and T_μ is the MV slice through J_μ.

We showed that this isomorphism restricts to

$$\phi : \overline{Gr^\lambda} \cap S^\mu_\mu \to \overline{O}_\lambda \cap T_\mu \cap n$$
Mirković–Vybornov isomorphism

In type A, where coweights can be viewed as partitions, the MV isomorphism says that

$$\overline{Gr}^\lambda \cap Gr_\mu \cong \overline{O}_\lambda \cap T_\mu$$

where O_λ is the conjugacy class of J_λ and T_μ is the MV slice through J_μ.

We showed that this isomorphism restricts to

$$\phi : \overline{Gr}^\lambda \cap S^\mu_- \to \overline{O}_\lambda \cap T_\mu \cap n$$

and that the RHS has decomposition

$$\bigsqcup_{\tau \in S(\lambda)_\mu} X_\tau \quad X_\tau = \hat{X}_\tau^{\text{top}}$$

where

$$\hat{X}_\tau = \{ A \in T_\mu \cap n : A_{|\lambda(i)}| \in O_{\lambda(i)} \text{ for } 1 \leq i \leq m \}$$
Example

Let \(\tau = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \) so \(m = 4 \) and \(r = 2 \). Then \(A \in \mathcal{X}_\tau \) takes the form

\[
\begin{bmatrix}
0 & a & b & c \\
0 & 0 & 0 & e \\
0 & 0 & 0 & f \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
Example

Let $\tau = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ so $m = 4$ and $r = 2$. Then $A \in \mathcal{X}_{\tau}$ takes the form

\[
\begin{bmatrix}
0 & a & b & c \\
0 & 0 & 0 & e \\
0 & 0 & 0 & f \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

$ae + bf = 0$
Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal.
Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal. Recall that both B_{gr} and B_{A} have polytopes—the same polytopes!
Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal.

Recall that both B_{gr} and B_{A} have polytopes—the same polytopes! This means that any other model for the crystal which is equivalent to the polytope model will also be common to both bases.
Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal.

Recall that both B_{gr} and B_A have polytopes—the same polytopes! This means that any other model for the crystal which is equivalent to the polytope model will also be common to both bases. In particular, they have the same tableaux!
Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal. Recall that both \mathcal{B}_{Gr} and \mathcal{B}_{Λ} have polytopes—the same polytopes! This means that any other model for the crystal which is equivalent to the polytope model will also be common to both bases. In particular, they have the same tableaux! To every Y, Z, one can assign $\tau(Y), \tau(Z)$ and $\tau(Y) = \tau(Z)$ iff $\text{Pol}(Z) = \text{Pol}(Z)$.

Given an MV cycle Z we showed that we could use its tableau $= (Z)$ to locate the generalized orbital variety that gets sent to an open subset of $\phi(X)$.

15
Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal.

Recall that both \mathcal{B}_{gr} and \mathcal{B}_{A} have polytopes—the same polytopes! This means that any other model for the crystal which is equivalent to the polytope model will also be common to both bases. In particular, they have the same tableaux! To every Y, Z, one can assign $\tau(Y), \tau(Z)$ and $\tau(Y) = \tau(Z)$ iff $\text{Pol}(Z) = \text{Pol}(Z)$.

Given an MV cycle Z we showed that we could use its tableau $\tau = \tau(Z)$ to locate the generalized orbital variety that gets sent to an open subset of Z.
Interesting in its own right, the above decomposition turns out to reveal a use for the tableaux model of the abstract crystal.

Recall that both B_{gr} and B_{Λ} have polytopes—the same polytopes! This means that any other model for the crystal which is equivalent to the polytope model will also be common to both bases. In particular, they have the same tableaux! To every Y, Z, one can assign $\tau(Y), \tau(Z)$ and $\tau(Y) = \tau(Z)$ iff $\text{Pol}(Z) = \text{Pol}(Z)$.

Given an MV cycle Z we showed that we could use its tableau $\tau = \tau(Z)$ to locate the generalized orbital variety that gets sent to an open subset of Z

$$\tau = \tau(Z) \Rightarrow \phi(X_\tau) \subset Z$$
Conclusion
The generalized orbital varieties quickly get quite complicated, and the ideal of the one needed for BKK’s example was unwieldy! But we persevered.
The generalized orbital varieties quickly get quite complicated, and the ideal of the one needed for BKK’s example was unwieldy! But we persevered.

Using the fact that

$$\varepsilon_p(X) = \frac{\text{mdeg}_W(\lambda_p)}{\text{mdeg}_W(W)}$$

and simply running \texttt{multidegree} in Macaulay2 we found that...
Let \((Y, Z)\) be such that

\[
\tau(Y) = \tau(Z) = \begin{pmatrix}
1 & 1 & 5 & 5 \\
2 & 2 & 6 & 6 \\
3 & 3 \\
4 & 4
\end{pmatrix}
\]
Counterexample

Let \((Y, Z)\) be such that

\[
\tau(Y) = \tau(Z) = \begin{bmatrix}
1 & 1 & 5 & 5 \\
2 & 2 & 6 & 6 \\
3 & 3 \\
4 & 4 \\
\end{bmatrix}
\]

then \(X_\tau\) is 16 dimensional generated in degrees 1, 2, 3, and 6,
Let \((Y, Z)\) be such that

\[
\tau(Y) = \tau(Z) = \begin{bmatrix}
1 & 1 & 5 & 5 \\
2 & 2 & 6 & 6 \\
3 & 3 \\
4 & 4
\end{bmatrix}
\]

then \(X_\tau\) is 16 dimensional generated in degrees 1, 2, 3, and 6, while a general point \(M\) of \(Y\) is looks like

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\oplus
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]
Counterexample

Let \((Y, Z)\) be such that

\[
\tau(Y) = \tau(Z) = \begin{pmatrix}
1 & 1 & 5 & 5 \\
2 & 2 & 6 & 6 \\
3 & 3 \\
4 & 4
\end{pmatrix}
\]

then \(X_\tau\) is 16 dimensional generated in degrees 1, 2, 3, and 6, while a general point \(M\) of \(Y\) is looks like

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1
\end{pmatrix} \oplus
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1
\end{pmatrix}
\]

Moreover

\[
\sum_i \chi(F_i M) D_i \neq \frac{\text{mdeg}_n(X_\tau)}{\text{mdeg}_n(0)}
\]
Counterexample

Let \((Y, Z)\) be such that

\[
\tau(Y) = \tau(Z) = \begin{bmatrix}
1 & 1 & 5 & 5 \\
2 & 2 & 6 & 6 \\
3 & 3 \\
4 & 4
\end{bmatrix}
\]

then \(X_\tau\) is 16 dimensional generated in degrees 1, 2, 3, and 6, while a general point \(M\) of \(Y\) is looks like

\[
\begin{bmatrix}
1 & 1 & 2 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix} \oplus \begin{bmatrix}
1 & 1 & 2 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

Moreover

\[
\sum_i \chi(F_i M)D_i \neq \frac{\text{mdeg}_n(X_\tau)}{\text{mdeg}_n(0)}
\]

therefore \(f_Y \neq f_Z\).
Counterexample

Let \((Y, Z)\) be such that

\[
\tau(Y) = \tau(Z) = \begin{pmatrix}
1 & 1 & 5 & 5 \\
2 & 2 & 6 & 6 \\
3 & 3 & & \\
4 & 4 & &
\end{pmatrix}
\]

then \(X_\tau\) is 16 dimensional generated in degrees 1, 2, 3, and 6, while a general point \(M\) of \(Y\) is looks like

\[
\begin{array}{cccc}
1 & 1 & 2 & 1 \\
1 & 2 & 1 & 1 \\
\end{array} \oplus \begin{array}{cccc}
1 & 1 & 2 & 1 \\
1 & 1 & 2 & 1 \\
\end{array}
\]

Moreover

\[
\sum_i \chi(F_i M)D_i \neq \frac{\text{mdeg}_n(X_\tau)}{\text{mdeg}_n(0)}
\]

therefore \(f_Y \neq f_Z\).
Thank you
\[\overline{D}(Z) = \overline{D}(Q) - 2\overline{D}(P) \]
Example

\[G = SL_3 \mathbb{C}, \ w_0 = s_1 s_2 s_1, \ \text{and} \ U = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \right\}, \ \text{so that} \ \mathbb{C}[U] = \mathbb{C}[x, y, z] \]
Example

\[G = SL_3 \mathbb{C}, \; w_0 = s_1 s_2 s_1, \text{ and } U = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \right\}, \] so that \(\mathbb{C}[U] = \mathbb{C}[x, y, z] \]

\[n = (1, 0, 1), \]
Example

\[G = SL_3 \mathbb{C}, \ w_0 = s_1s_2s_1, \text{ and } U = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \right\}, \text{ so that } \mathbb{C}[U] = \mathbb{C}[x, y, z] \]

\[n = (1, 0, 1), \ \tau = \begin{bmatrix} 1 & 2 \\ 3 & \end{bmatrix} \]
Example

\(G = SL_3 \mathbb{C}, w_0 = s_1 s_2 s_1, \) and \(U = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \right\}, \) so that \(\mathbb{C}[U] = \mathbb{C}[x, y, z] \)

\(n = (1, 0, 1), \tau = \begin{pmatrix} 1 & 2 \\ 3 \end{pmatrix} \)

\(\alpha_1 + \alpha_2 \)

\(\alpha_1 \) in \(\mathfrak{t}_\mathbb{R}^* \cong \mathbb{R}^2 \)
Example

\[G = SL_3 \mathbb{C}, \; w_0 = s_1 s_2 s_1, \; \text{and} \; U = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \right\}, \; \text{so that} \; \mathbb{C}[U] = \mathbb{C}[x, y, z] \]

\[n = (1, 0, 1), \; \tau = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \]

\[\alpha_1 + \alpha_2 \]

\[\alpha_1 \; \text{in} \; t^*_\mathbb{R} \cong \mathbb{R}^2 \; \text{will have “measure”} \; \frac{1}{\alpha_1(\alpha_1 + \alpha_2)} \]
Example

\(G = SL_3 \mathbb{C}, \ w_0 = s_1 s_2 s_1, \) and \(U = \left\{ \begin{bmatrix} \alpha_1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \right\}, \) so that \(\mathbb{C}[U] = \mathbb{C}[x, y, z] \)

\(n = (1, 0, 1), \ \tau = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \)

\(\alpha_1 + \alpha_2 \)

\(\alpha_1 \) in \(t_\mathbb{R}^* \cong \mathbb{R}^2 \) will have “measure” \(\frac{1}{\alpha_1(\alpha_1 + \alpha_2)} \)

\(\overline{Gr}^{\omega_2} \cong \mathbb{P}^2 \) in \(Gr \)
Example

\[G = SL_3 \mathbb{C}, \quad w_0 = s_1 s_2 s_1, \text{ and } U = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \right\}, \text{ so that } \mathbb{C}[U] = \mathbb{C}[x, y, z] \]

\[n = (1, 0, 1), \quad \tau = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \]

\[\alpha_1 + \alpha_2 \quad \triangleleft \alpha_1 \quad \text{in } t^*_\mathbb{R} \cong \mathbb{R}^2 \text{ will have "measure" } \frac{1}{\alpha_1(\alpha_1 + \alpha_2)} \]

\[Gr^{\omega_2} \cong \mathbb{P}^2 \text{ in } Gr \text{ and the component of } P(\omega_2) = 1 \rightarrow 2 \text{ in } \Lambda \]
Example

$G = \text{SL}_3 \mathbb{C}$, $w_0 = s_1 s_2 s_1$, and $U = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \right\}$, so that $\mathbb{C}[U] = \mathbb{C}[x, y, z]$

$n = (1, 0, 1)$, $\tau = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

$\alpha_1 + \alpha_2$

α_1 in $t_\mathbb{R}^* \cong \mathbb{R}^2$ will have “measure” $\frac{1}{\alpha_1(\alpha_1 + \alpha_2)}$

$\overline{Gr}_2 \cong \mathbb{P}^2$ in Gr and the component of $P(\omega_2) = 1 \rightarrow 2$ in Λ will both correspond to $z \in \mathbb{C}[U]$