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Abstract

The data of fixed λ, µ ` n and the difference ν = λ− µ define

• Gλ ∩ Sµ (Coulomb branch)

• Mλ
µ (Higgs branch)

• Mλ
µ = Oλ ∩ Tµ (Mirković—Vybornov slice)

• Λ(ν) (Lusztig’s nilpotent variety)

Definition. The MV cycles of coweight (µ, λ) are the irreducible components of Gλ ∩ Sµ.
Fact. Let µ = 0. There is a bijection

Irr(Λ(ν))←→ {MV polytopes of weight ν} ←→ Irr(Gν ∩ S0) .

The first correspondence is obtained by sendingM ∈ Λ(ν) to its Harder-Narasimhan polytope
Pol(M) = Conv(dimN |N ⊂M as Λ-submodule) where dimN =

∑
(dimNi)αi .

Example 1.M = 2→ 1 has submodules 0, 1, 1← 2 hence Pol(M) = Conv(0, α1, α1 + α2).
One would like to upgrade the (combinatorial) correspondence to a geometric one.

Fact. Let X ⊂ PN be a projective variety with a torus action. Its moment map image can be
expressed in terms of the induced torus action on sections Γ(X,O(n)).

This description suggests that a geometric correspondence may be found by studying (rep-
resentation theory of) cohomology of MV cycles and corresponding Λ-modules.
Theorem (Conjecture). For M ∈ Λ(ν) there is a top-dimensional subscheme X ⊂ Gν ∩ S0 such
that

H•(G(n)(M)) ∼= Γ(X,O(n)) .

Problem. The watered-down version of this conjecture and what I am working on is the claim
that the “generating function” of an irreducible component of Λ(ν) coincides with the equiv-
ariant multiplicity of the corresponding MV cycle.
Definition. Let [M ] ∈ Irr(Λ). Let M ∈ [M ] be generic. The generating function of [M ] is

χ(M) =
∑

i=(i1,...,iN)

dimH•(F (i)(M))

αi1(αi1 + αi2) · · · (αi1 + · · · + αiN)

where F (i) is a permissible flag of submodules of M .

Example 2. Suppose M = 2 1 is generic. It has exactly one two-step flag F (1,2) = 1 ⊂
1← 2 so χ = 1

α1(α1+α2)
.

All sets of irreducible components we consider are indexed by (semi-)standard Young
tableaux of shape λ and content µ. It is easier to study cohomology of MV cycles in Mirković—
Vybornov coordinates and the (generalized) Spalsenstein algorithm tells us how to cook up a
generic matrix A = Aα in Mλ

µ given a tableau α.
By means of another algorithm, one produces a generic module M = Mα in Λ(ν). In the case

of two-row tableaux one can apply a special algorithm using Dyck paths (see examples).

Baby steps towards verifying the claim

Since we are working in coordinates, with MVyb slices, rather than in G, the first step is to
check that this is OK, i.e. that the combinatorial data is intact.

In particular, we check that the Lusztig datum of an irreducible component of an MVyb slice
agrees with the Lusztig datum of the corresponding MV cycle.

The Lusztig datum of an MV cycle in G is defined using certain functionsDγ [Kam10]. Under
an alternate Gλ ∩ Sµ ∼= Mλ

µ isomorphism [CK16]

Dγ(A) = min
|J |=|γ|

val det(tI − A)γ×J .

Lemma.D[an] =
∑n
i=a λi.

Corollary.D[ab] = b−
∑a−1
i=1 λ

(b)
i .

Corollary. Lusztig data agree, n(Aα) = n(α).
Problem. In [ZJ15] the multidegrees of irreducible components of MVyb slices are shown to
satisfy the qKZ equations (and more). One idea which I have not made any progress with is
to check that generating functions satisfy qKZ too.

Below is a diagram of some of the maps involved in this story. What follows are several
examples.

SSYT
MVyb slice =

component of
Oλ ∩ Tµ ∩ n

SYT
orbital variety =

component of
Oλ ∩ n

MV cycle
component of

Gλ ∩ Sµ

GT pattern Lusztig data MV polytope

MV cycle
component of

Gλ ∩ S0

containing

Gλ ∩ S0

∼=MVyb

Rules for computing multidegrees

Let T = (C×)M be a torus, and suppose (X ⊂ W ) is a pair of linear T -reps, with X a T -
invariant closed subscheme.

The multidegree of such a pair is a polynomial mdegWX ∈ Sym T ∗ ∼= Z[z1, . . . , zM ] com-
puted as follows.

1.X = W = {0} ⇒ mdegWX = 1

2. If X ⊂ W has top-dimensional components Xi, then mdegWX =
∑

[X : Xi]mdegWXi
where [X : Xi] denotes multiplicity of Xi in X . Thus the case of schemes is reduced to the
case of varieties (as reduced irreducible schemes).

3. If X is a variety and H ⊂ W is a T -invariant hyperplane, then

(a)X 6⊂ H ⇒ mdegWX = mdegH(X ∩H)

(b)X ⊂ H ⇒ mdegWX = mdegHX · (weight of T on W/H)

Example 3. Let X =

[
0 0 a2 a3

a4 a5
0
0

]
∈ n. Let W = V (a1, a6) ⊂ n and H = V (a1, a6, a2, a3, a4, a5) ⊂

W . Since X ∈ W and X ∩H = 0

mdegn(X) = {weight of T on n/W} ·mdegW (X) = (z1 − z2)(z3 − z4)

Example 4. Let X =

[
0 a1 a2 a3

0 a5
a6

]
∈ n such that a1a5 + a2a6 = 0. Let W = V (a4) ⊂ n and

H = V (a4, a2) ⊂ W . Since X ∈ W and X ∩H = V (a1a5) ⊂ H

mdegn(X) = {weight of T on n/W} ·mdegW (X) = (z2 − z3) ·mdegH(X ∩H)

= (z2 − z3) ·
(
mdegH(V (a1)) + mdegH(V (a5))

)
= (z2 − z3) · ({weight of T on H/V (a1)} + {weight of T on H/V (a5)})
= (z2 − z3)(z1 − z2 + z2 − z4) = (z2 − z3)(z1 − z4)

Bricks

Bricks are submodules of Λ(ν) attached to elements βk = si1 · · · sik−1αk of the root lattice, com-
puted wrt i = (12 . . . n12 . . . n − 1 . . . 121). Warning! I abuse notation and denote the brick
M(βk) by βk and similarly the module M(α) by α.

Example 5. Let i = (123121). Then B =


β1 = 1 6⊂ β2 =

1y
2

6⊂ β3 =

1y
2y
3

6⊂ β4 = 2 6⊂ β5 =

2y
3

6⊂ β6 = 3


.

Example 6. α = 1 3
2 4 has Lusztig datum (100110) and determines Mα as an iterated central ex-

tension by bricks β1, β4, β5, 0 β1 α β4 ⊕ β5 0 . Alternatively, the
mnemonic short exact sequence

0 1 3
2 4

0

determines Mα =
2 2

1 3

∼=
2

1

⊕
2

3

whose permissible flags are

(1, 3, 2, 2), (3, 1, 2, 2), (1, 2, 3, 2), (3, 2, 1, 2). Note 2 = χ((1, 3, 2, 2)) = χ((3, 1, 2, 2)) = χ(P1). Find
χ(Mα) = 1

α1·α3·(α1+α2)·(α2+α3)
agreeing with the multidegree computation in example 4.

Example 7. α = 1 2
3 4 has Lusztig datum (010010) and determines Mα as an iterated central

extension of bricks β2, β5, 0 β2 α β5 0 . Alternatively

0 1 2
3 4

0

In either case, we get the diamond-shaped module Mα =

2

1 3

2

whose per-

missible flags are (2, 1, 3, 2), (2, 3, 1, 2). Find χ(Mα) = 1
α2·(α1+α2)·(α2+α3)·(α1+α2+α3)

agreeing with
multidegree computation in example 3.

Example 8. Let i = (123451234123121). Lusztig datum (010000010101000) for α = 1 2 4
3 5 6

corre-

sponds to

0 1 2 4
3 5 6

0

and determines

Mα =

3 3

2 4

1 3 5

2 4

∼=

3 3

2 4

1 3 5

2 4

Example 9. Lusztig datum (100001010101000) for α = 1 3 4
2 5 6

correspondends to

0 1 3 4
2 5 6

0

determines

Mα =

3 3

2 4 2

1 3 5

4

∼=

3

2

1

⊕

3

2 4

3 5

4
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