Mathematics
UNIVERSITY OF TORONTO

Generating functions of modules over preprojective algebras and coho-

 mology of MV cycles Anne Dranowski
Abstrac

The data of fixed $\lambda, \mu \vdash n$ and the difference $\nu=\lambda-\mu$ define

- $\overline{\mathcal{G}^{\lambda}} \cap S_{\mu}$ (Coulomb branch)
- $\mathcal{M}_{\mu}^{\lambda}$ (Higgs branch)
- $M_{\mu}^{\lambda}=\overline{\mathcal{O}}_{\lambda} \cap \mathcal{T}_{\mu}$ (Mirković—Vybornov slice)
- $\Lambda(\nu)$ (Lusztig's nilpotent variety)

Definition. The MV cycles of coweight (μ, λ) are the irreducible components of $\overline{\mathcal{G}^{\lambda}} \cap S$ Fact. Let $\mu=0$. There is a bijection

$$
\operatorname{Irr}(\Lambda(\nu)) \longleftrightarrow\{\text { MV polytopes of weight } \nu\} \longleftrightarrow \operatorname{Irr}\left(\mathcal{G}^{\nu} \cap S_{0}\right) .
$$

The first correspondence is obtained by sending $M \in \Lambda(\nu)$ to its Harder-Narasimhan polytope $\operatorname{Pol}(M)=\operatorname{Conv}(\operatorname{dim} N \mid N \subset M$ as Λ-submodule $)$ where $\operatorname{dim} N=\sum\left(\operatorname{dim} N_{i}\right) \alpha_{i}$.
Example 1. $M=2 \rightarrow 1$ has submodules $0,1,1 \leftarrow 2$ hence $\operatorname{Pol}(M)=\operatorname{Conv}\left(0, \alpha_{1}, \alpha_{1}+\alpha_{2}\right)$. One would like to upgrade the (combinatorial) correspondence to a geometric one.
Fact. Let $X \subset \mathbb{P}^{N}$ be a projective variety with a torus action. Its moment map image can be expressed in terms of the induced torus action on sections $\Gamma(X, \mathcal{O}(n))$.
This description suggests that a geometric correspondence may be found by studying (rep-
resentation theory of) cohomology of MV cycles and corresponding Λ-modules resentation theory of) cohomology of MV cycles and corresponding Λ-modules Theorem (Conjecture). For $M \in \Lambda(\nu)$ there is a top-dimensional subscheme $X \subset \overline{\mathcal{G}^{\nu} \cap S_{0}}$ such hat

$$
H^{\bullet}\left(G^{(n)}(M)\right) \cong \Gamma(X, \mathcal{O}(n)) .
$$

Problem. The watered-down version of this conjecture and what I am working on is the claim hat the "generating function" of an irreducible component of $\Lambda(\nu)$ coincides with the equivriant multiplicity of the corresponding MV cycle.
Definition. Let $[M] \in \operatorname{Irr}(\Lambda)$. Let $M \in[M]$ be generic. The generating function of $[M]$ is

$$
\chi(M)=\sum_{\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right)} \frac{\operatorname{dim} H \bullet\left(F^{(\mathbf{i})}(M)\right)}{\alpha_{i_{1}}\left(\alpha_{i_{1}}+\alpha_{i_{2}}\right) \cdots\left(\alpha_{i_{1}}+\cdots+\alpha_{i_{N}}\right)}
$$

where $F^{(\mathrm{i})}$ is a permissible flag of submodules of M.
Example 2. Suppose $M=2 \longrightarrow 1$ is generic. It has exactly one two-step flag $F^{(1,2)}=1 \subset$ $\leftarrow 2$ so $\chi=\frac{1}{\alpha_{1}\left(\alpha_{1}+\alpha_{2}\right)}$.
All sets of irreducible components we consider are indexed by (semi-)standard Young tableaux of shape λ and content μ. It is easier to study cohomology of MV cycles in Mirkovićybornov coordinates and the (generalized) Spalsenstein algorithm tells us how to cook up a generic matrix $A=A_{\alpha}$ in M_{μ}^{λ} given a tableau α.
By means of another algorithm, one produces a generic module $M=M_{\alpha}$ in $\Lambda(\nu)$. In the case of two-row tableaux one can apply a special algorithm using Dyck paths (see examples).

Baby steps towards verifying the claim

Since we are working in coordinates, with MVyb slices, rather than in \mathcal{G}, the first step is to check that this is OK , i.e. that the combinatorial data is intact.
In particular, we check that the Lusztig datum of an irreducible component of an MVyb slice grees with the Lusztig datum of the corresponding MV cycle
The Lusztig datum of an MV cycle in \mathcal{G} is defined using certain functions D_{γ} [Kam10]. Under an alternate $\overline{\mathcal{G}^{\lambda}} \cap S_{\mu} \cong M_{\mu}^{\lambda}$ isomorphism [CK16]

$$
D_{\gamma}(A)=\min _{|J|=|\gamma|} \operatorname{val} \operatorname{det}(t I-A)_{\gamma \times J} .
$$

Lemma. $D_{[a n]}=\sum_{i=a}^{n} \lambda_{i}$.
Corollary. $D_{[a b]}=b-\sum_{i=1}^{a-1} \lambda_{i}^{(b)}$
Corollary. Lusztig data agree, $n\left(A_{\alpha}\right)=n(\alpha)$
Problem. In [ZJ15] the multidegrees of irreducible components of MVyb slices are shown to satisfy the qKZ equations (and more). One idea which I have not made any progress with is to check that generating functions satisfy $q K Z$ too
Below is a diagram of some of the maps involved in this story. What follows are several examples.

Let $T=\left(\mathbb{C}^{\times}\right)^{M}$ be a torus, and suppose $(X \subset W)$ is a pair of linear T-reps, with X a T The multidegree of such a pair is a polynomial $\operatorname{mdeg}_{W} X \in \operatorname{Sym} T^{*} \cong \mathbb{Z}\left[z_{1}, \ldots, z_{M}\right]$ computed as follows.

1. $X=W=\{0\} \Rightarrow \operatorname{mdeg}_{W} X=1$
.If $X \subset W$ has top-dimensional components X_{i}, then $\operatorname{mdeg}_{W} X=\sum[X: X] \operatorname{mdeg}_{W} X_{i}$ where $\left[X: X_{i}\right.$] denotes multiplicity of X_{i} in X. Thus the case of schemes is reduced to the case of varieties (as reduced irreducible schemes).
2. If X is a variety and $H \subset W$ is a T-invariant hyperplane, then
(a) $X \not \subset H \Rightarrow \operatorname{mdeg}_{W} X=\operatorname{mdeg}_{H}(X \cap H)$
(b) $X \subset H \Rightarrow \operatorname{mdeg}_{W} X=\operatorname{mdeg}_{H} X \cdot($ weight of T on $W / H)$

Example 3. Let $X=\left[\begin{array}{ccc}0 & a_{2} & a_{3} \\ a_{4} & a_{5} \\ 0\end{array}\right] \in \mathfrak{n}$. Let $W=V\left(a_{1}, a_{6}\right) \subset \mathfrak{n}$ and $H=V\left(a_{1}, a_{6}, a_{2}, a_{3}, a_{4}, a_{5}\right) \subset$
W. Since $X \in W$ and $X \cap H \xlongequal{0} 0$
$\operatorname{mdeg}_{\mathfrak{n}}(X)=\{$ weight of T on $\mathfrak{n} / W\} \cdot \operatorname{mdeg}_{W}(X)=\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)$
Example 4. Let $X=\left[\begin{array}{ccc}0 & a_{1} & a_{2} \\ 0 & a_{3} \\ 0 & a_{5} \\ a_{6}\end{array}\right] \in \mathfrak{n}$ such that $a_{1} a_{5}+a_{2} a_{6}=0$. Let $W=V\left(a_{4}\right) \subset \mathfrak{n}$ and $H=V\left(a_{4}, a_{2}\right) \subset W$. Since $X \in W$ and $X \cap H=V\left(a_{1} a_{5}\right) \subset H$

$$
\begin{aligned}
\operatorname{mdeg}_{\mathfrak{n}}(X) & =\left\{{\operatorname{weight~of~} T \text { on } \mathfrak{n} / W\} \cdot \operatorname{mdeg}_{W}(X)=\left(z_{2}-z_{3}\right) \cdot \operatorname{mdeg}_{H}(X \cap H)}=\left(z_{2}-z_{3}\right) \cdot\left(\operatorname{mdeg}_{H}\left(V\left(a_{1}\right)\right)+\operatorname{mdeg}_{H}\left(V\left(a_{5}\right)\right)\right)\right. \\
& =\left(z_{2}-z_{3}\right) \cdot\left(\left\{{\text { weight of } \left.\left.T \text { on } H / V\left(a_{1}\right)\right\}+\left\{\text { weight of } T \text { on } H / V\left(a_{5}\right)\right\}\right)}=\left(z_{2}-z_{3}\right)\left(z_{1}-z_{2}+z_{2}-z_{4}\right)=\left(z_{2}-z_{3}\right)\left(z_{1}-z_{4}\right)\right.\right.
\end{aligned}
$$

Bricks

Bricks are submodules of $\Lambda(\nu)$ attached to elements $\beta_{k}=s_{i_{1}} \cdots s_{i_{k-1}} \alpha_{k}$ of the root lattice, computed wrt $\mathbf{i}=(12 \ldots n 12 \ldots n-1 \ldots 121)$. Warning! I abuse notation and denote the brick $M\left(\beta_{k}\right)$ by β_{k} and similarly the module $M(\alpha)$ by α
Example 5. Let $\mathbf{i}=(123121)$. Then $\mathbf{B}=\left\{\beta_{1}=1 \not \subset \beta_{2}={\underset{2}{2}}_{1}^{2} \not \subset \beta_{3}={\underset{2}{2}}_{1}^{1} \not \subset \beta_{4}=2 \not \subset \beta_{5}=\prod_{3}^{2} \not \subset \beta_{6}=3\right\}$
Example 6. $\alpha={ }_{2}^{1,3}$ has Lusztig datum (100110) and determines M_{α} as an iterated central extension by bricks $\beta_{1}, \beta_{4}, \beta_{5}, 0 \longrightarrow \beta_{1} \longrightarrow \alpha \longrightarrow \beta_{4} \oplus \beta_{5} \longrightarrow 0$. Alternatively, the mnemonic short exact sequence
determines M_{α}

whose permissible flags are
$(1,3,2,2),(3,1,2,2),(1,2,3,2),(3,2,1,2)$ Note $2=\chi((1,3,2,2))=\chi((3,1,2,2))=\chi\left(\mathbb{P}^{1}\right)$. Find $\chi\left(M_{\alpha}\right)=\frac{\alpha_{1} \cdot \alpha_{3} \cdot\left(\alpha_{1}+\alpha_{2}\right) \cdot\left(\alpha_{2}+\alpha_{3}\right.}{}$ agreeing with the multidegree computation in example 4
Example 7. $\alpha={ }_{3}^{1 / 2}{ }_{4}^{2}$ has Lusztig datum (010010) and determines M_{α} as an iterated central extension of bricks $\beta_{2}, \beta_{5}, 0 \longrightarrow \beta_{2} \longrightarrow \alpha \longrightarrow \beta_{5} \longrightarrow 0$. Alternatively

Abstract

In either case, we get the diamond-shaped module $M_{\alpha}=1$

missible flags are $(2,1,3,2),(2,3,1,2)$. Find $\chi\left(M_{\alpha}\right)=\frac{1}{\alpha_{2} \cdot\left(\alpha_{1}+\alpha_{2}\right) \cdot\left(\alpha_{2}+\alpha_{3}\right) \cdot\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}$ agreeing with multidegree computation in example 3 .
Example 8. Let $\mathbf{i}=(123451234123121)$. Lusztig datum (010000010101000) for $\alpha=124{ }_{3}$ corre sponds to

and determines

Example 9. Lusztig datum (100001010101000) for $\alpha=\begin{array}{llll}1 & 3 & 4 \\ 2 & 5 & 6\end{array}$ correspondends to

determines

KKam10] Joel Kamnitzer. Mirković-vilonen cycles and polytopes. Annals of Mathematics, pages 245-294, 2010.
[Z]15] Paul Zinn-ustin. Quiver varieties and quantum knizhnik-zamolodchikov equation. arXiv preprint arXiv:1502.01093, 2015

