
To prove Theorem 3 it is necessary to consider the adjoint functor G: C (S)- ¢(A). It is 
defined as follows : G (W) = ¥ = Hom~(A, W);: a (~ = --~xi~(~i~ + ~ (v (~)); ~ (A~) ~ W~ -~. Although the 
image G(cb(s)) does not lie in cb(A), G allows one to define a functor GD:Db($)~D~(A). Using 
the Koszul complex, it is easy to verify that the functor GD is inverse to the function FD. 

5. Let ~r,~ be the full subcategories in Db(S) and Db(A), generated by the complexes, 
consisting of finite-dimensional (respectively free) modules. It is easy to verify that 
F~ (~r) = ~, so that F D defines an equivalence of categories Db(A)/$ ~ Db(S)/~ (the quotient 
categories in the sense of Verdier [7]). 

Using Serre's theorem, describing the category Coh in terms of ~(S) (see [9]), it is 
easy to get that the category Db(Coh) is equivalent with D~(S)/~ r. Thus, from Theorem 3 fol- 
lows 

THEOREM 4. The categories Db(Coh) and Db(A)/~ are equivalent. 

6. Proposition. The natural imbedding J6(A)-~D~(A) defines an equivalence of categor- 
ies ~ (A)/~ -- Db(A)/~. 

The proposition follows from the fact that free A-modules are projective and injective. 
Theorem 2 follows from this proposition and Theorem 4. 

7. Theorems 1-4 are true for any field k; Theorems 3 and 4 are true if k is replaced 
by an arbitrary basis Z, E by a locally .free sheaf of~z-modules , P by a projective spectrum 
of sheaves of algebras S = S(X), where X= E*. 
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COHERENT SHEAVES ON pn AND PROBLEMS OF LINEAR ALGEBRA 

A. A. Beilinson UDC 513.015.7 

The goal of this note is to generalize the results of Horrocks and Barth [i], and Drin- 
fel'd and Manin [2] to the case of projective space of any dimension n. In particular, for 
any coherent sheaf L on pn there will be constructed a "two-sided resolution" which is unique 
up to homotopy (a qomplex K" with H°(K ") = L, Hi(K ") = 0 for ~0), the i-th term of which is 
isomorphic with ~H~+J(P~,L(--j))® ~) (generalized "monads" of Barth). The precise formula- 

tion of the result uses the derived categories of Verdier [3]. 

i. Let C be a triangulated category. Weshall say that a family of its objects{Xi} 
generates C, if the smallest full triangulated subcategory containing them is equivalent with 

C. 

LEMMA i. Let C and D be triangulated categories, F: C ÷ D be an exact functor, {Xi} 
be a family of objects of C. Let us assume that {X i} generates C, {F(Xi)} generates D, and 
forany pair Xi, Xj from the family F: Hom'(Xi, Xj) ÷ Hom'(F(Xi), F(Xj)) is an isomorphism. 

Then F is an equivalence of categories. 

2. Let A" be a graded algebra. Notation: A'[i] is the free one-dimensional graded 
A'-module with distinguished generator of degree i; M[o,n](A') is the full subcategory of 
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the category of graded A'-modules and morphisms of degree 0, whose objects are isomorphic 
with finite direct sums of A'[i], where 0<~<n;K b [0,~q (A') is the category whose objects are 
finite complexes over M[0.~ ] (A°), and whose morphisms are morphisms of complexes modulo null- 
homotopic ones. 

3. With an (n + l)-dimensional vector space V over the field k are associated two 

graded algebras A'(V*) and S'(V). We set KA= K b [o,~](A'(V*)),Ks = K~0,n](S'(V)). (It is clear that 

replacing A" (V*) by A" (V*)/A~+I(F*) and S" (V) by S'(V)/(S~+I(V)) gives an equivalent category 

Kb H ° [0,~] .) Let P be n-dimensional projective space over k, V = (P, 0(I)). 

LEMMA 2. For any pair i, j such that 0~<Lf~<~, and ~>i 

Hem (~ (0, ~(7)) ---- A~'~(F*), Ext~(~(0 ' 2i(7)) _-- 0, 

Horn (O (--~), O (--j)) = S ~-~ (V), Ext z (0 (--0, O (-- 7)) = 0, 

where composition of morphisms coincides with multiplication in A" (V*) and S" (V), respec- 
tively. 

The lemma is proved by induction with the aid of the exact sequence 0.-~ fl~(0-~ A ~ (P3 ® 0-~ 
~-t (0 -~ 0. 

4. Let M(P) be the category of coherent sheaves on P, and Db(p) be its derived cate- 
gory. It follows from Lemma 2 that there exist natural additive functors ~: ~[0,~] (A'(V*))-~ 
,M~(P) and ~! M[0,~ ](S" (V)) -~ M (P) such that 

~(A'(v*)[~]) = ~ (~), ~ (s" (~)[d) = o (-~). 

They extend canonically to exact functors F~:.K A-~D~ (P), F~: K s -~ D~(P). 

THEOREM. F~ and F~ are equivalences of categories° 

Proof. We verify that Fi satisfy Lemma 1 (by {Xi} is meant {A'(F*)[i]} and~{S~ID [~]~, re- 
spectively, 0<i<n). According to Lerm-na 2, it suffices to show that ~i(i) (respectively, 
O(--~), 0<i~< ~) generate Db(p). On P x P the Koszul resolution of the diagonal A has the 
form 

~ n * o --, p~(~ (n)) ® p~(O (-,~)) . . . . .  p~(.q~(~)) ® p~ (0 (-~))  -~ 0 r x  P ~ O~ - ,  0 

(here p~:P× P-~P are the projections). In particular ~&, which means also any object of 
L ' 

* 
Db(P × P> of the form O~ ® Lp~(X), where X ~ ObO~(P), belongs to the full triangulated sub- 

. category of D~(P X P), generated by sheaves of the form p~(~(~))® p~(y). It is evident from the 
L 

projection formulas that X=Rp~.(Oa®Lp=(X)) belongs to the full triangulated subcategory of 

Db(p), generated by ~(i)®Hp~,(p~(Y))=~(i)®RF(Y), i.e., generated by ~i(i). Consideration of 

L . L  ~ the formula X = Rp~ ( p~ ® 0 a) gives the result for O(--i) which was required. 

.R. emarks, i. The Koszu! resolution makes it possible to construct explicitly functors 
inverse to F i. 

2. In terms of K A and K S it is easy to calculate functors of type ® and R Hom on 

Db(p). For example, the functor on KA, corresponding to the tensor product on Db(p), is de- 

fined as follows. An object F~(~(i)®~i(/)) is represented by a complex in degrees 0 and i: 

@ A ~+-i'ra (V) ® A'(V*) [m I ~ @ A~+~-~(V) ® A" (V*) [~]. 
j ~ r n ~ i  k j> l<i  k 

Here the differential is induced by the exterior p~oduct under the isomorphism 

HomA.(w ) (A i+~-m (V) ® A" (V ~) [ m], A ~+~-~ (F) ® A" (F*) [~]) = Hom~ (A ~+~-m (V) ® A m-~ (V), A ~+~-~ (V)). 
~ k 

3. The theorem is easily generated to the case of projective bundles over any base 
(whence follows directly a known theorem about Ko). 

The author thanks V. G. Drinfel'd and Yu. I. Manin profoundly for posing the problem 
and for valuable discussions. 
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DEGREE OF DEGENERACY OF A SINGULAR POINT OF A VECTOR FIELD 

ON THE PLANE 

R. I. Bogdanov UDC 517.9 

In families of vector fields on the plane, depending on a finite number of parameters, 
one can encounter degenerate singular points. A degenerate singular point with given phase 
portrait can occur for certain values of the parameters stably with respect to small motions 
of the family: in any close family, for close values of the parameters there occurs a singu- 
lar point with the original phase portrait. 

In studying the suspension of the phase portrait in the family it is important to know 
the minimal number of parameters for which a singular point "of given form" can occur stably. 
Here the concept of "given form" can be made precise in various ways; we shall understand by 
it a singular point of given Cr-orbital type. 

The following results allow one to calculate this number for Cr-sufficient jets of a 
vector field at a singular point. In this paper this is called the cr-codimension. 

Notation. We denote by vr(s2) the Lie algebra (ring) of germs at the point (0) ~R 2 of 
vector fields of class C r (functions of class C ~) on the plane (r = i, 2, ., =; in the 
case r = = the index r is omitted). 

By Jkv we denote the space of k-jets of germs from V, by ~k we denote the natural pro- 
jection ~k: V ~ JkV. 

i. Cr-codimension 

i.i. Definition. We call germs u, v ~ V , Cr-orbitally equivalent (u ~4, if the phase 
portraits of representatives of the germs u and v are carried into one another (preserving 
the direction of motion along phase curves) with the aid of the germ at the point (0) ~R ~ of 
a diffeomorphism of class Cr~:R ~R~,~(0) = 0. 

1.2. Definition. We call a k-jet q=~J~V Cr-sufficient if Vu, v~V: ~u=~v=q---~ur~v. 

r 
1.3. Definition. We call Cr-sufficient k-jets q, p ~J~V cr-orbitally equivalent, qNp, 

T 
i f  ~ u , v ~  V: ~ k u = q , ~ v = p ,  u ~ v .  

1.4. Notation. By Or(q), where q~J~V is a Cr-sufficient k-jet, we denote the set of 

p~ Cr-sufficient k-jets p ~ ]~V : q. 

LEMMA (see [3]). Or(q) is a semialgebraic submanifold of the space JkV. 

1.5. Definition. The Cr-codimension of a Cr-sufficient k-jet q ~ JkF will mean the 
codimension of the submanifold Or(q) in the space JkV. 

2. Dual Objects 

2.1. Notation. By A m (respectively, A~), m = 0, i, 2, we denote the space of m-vector 
fields of class C = on the plane, which decrease rapidly at infinity (respectively, the space 
dual to Am formed by exterior m-forms on the plane with coefficients in the algebra of slow- 
ly growing distributions on the plane). 

lloscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 
12, No. 3, pp. 70-71, July-September, 1978. Original article submitted August, i, 1977. 

216 0016-2663/78/1203-0216507.50 © 1979 Plenum Publishing Corporation 




