Assignment 6 - MATC46

Due March 312016

Question 1 A 3×3 square plate with $\alpha=1 / 2$ is heated in such a way that the temperature is distributed with $f(x, y)=y$. After that the temperature at its left and right edges being held at 0 and the lower and upper edges being insulated. Find a series expansion that gives the temperature in the plate for $t>0$.

Solution The heat equation dictates

$$
u_{t}=\alpha^{2} \Delta u \Longrightarrow 4 u_{t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

Assume the solution is separable to deduce (i.e. $u(x, y, t)=X(x) Y(y) T(t))$,

$$
4 \frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\lambda^{2} \quad \text { where } \lambda \in \mathbb{R}
$$

so we see

$$
T(t)=A e^{-\lambda^{2} t / 4}
$$

since heat is leaving the system (this forces a negative eigenvalue). Splitting the spacial part shows

$$
\begin{gathered}
X^{\prime \prime}=-m^{2} X \quad \& \quad Y^{\prime \prime}=-n^{2} Y \quad \text { where } \quad m^{2}+n^{2}=\lambda^{2} \\
\Longrightarrow X=A \cos m x+B \sin m x \quad \& \quad Y=C \cos n y+D \sin n y
\end{gathered}
$$

Define our space to be $\Omega=[0,3] \times[0,3]$ and we see the boundary data for X gives:

$$
X(0)=X(3)=0 \Longrightarrow A=0 \quad \& \quad \sin 3 m=0 \Longrightarrow m=\frac{n_{1} \pi}{3}, \quad n_{1} \in \mathbb{N}
$$

For y, we see

$$
Y^{\prime}(0)=Y^{\prime}(3)=0 \Longrightarrow D=0 \quad \& \quad \sin 3 n=0 \Longrightarrow n=\frac{n_{2} \pi}{3}, \quad n_{2} \in \mathbb{N}
$$

Now using linearity, we know the solution must be a sum of all the eigenfunctions we've found:

$$
u(x, y, t)=\sum_{n_{1}, n_{2} \geqslant 0} c_{n_{1}, n_{2}} \exp \left(-\frac{\pi^{2}\left(n_{1}^{2}+n_{2}^{2}\right)}{36} t\right) \sin \left(\frac{n_{1} \pi x}{3}\right) \cos \left(\frac{n_{2} \pi y}{3}\right)
$$

The initial data will give us the coefficients of the series by using orthogonality of the eigenfunctions. We see $f(x, y)=y$ at $t=0$, so when $n_{2} \neq 0$, we have

$$
c_{n_{1}, n_{2}}=\frac{4}{9} \int_{0}^{3} \int_{0}^{3} y \sin \left(n_{1} \pi x / 3\right) \cos \left(n_{2} \pi y / 3\right) d x d y=-12 \frac{\left(1-(-1)^{n_{1}}\right)\left(1-(-1)^{n_{2}}\right)}{\pi^{3} n_{1} n_{2}^{2}}
$$

and when $n_{2}=0$

$$
c_{n_{1}, 0}=\frac{2}{9} \int_{0}^{3} \int_{0}^{3} y \sin \left(n_{1} \pi x / 3\right) d x d y=3 \frac{1-(-1)^{n_{1}}}{\pi n_{1}}
$$

Question 2 A circular plate with radius 2 and with $\alpha=1 / 2$ is heated in such a way that the temperature is distributed with $f(r, \theta)=2-r$. After that the temperature on the boundary being held at 0 . Write the formal Bessel-Fourier expansion that gives the temperature in the plate for $t>0$. Write the coefficients via integrals involving Bessel functions.

Solution The heat equation dictates

$$
4 u_{t}=\Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

Note that the initial data is circularly symmetric, thus u is independent of θ. So we assume the solution is separable, i.e. $u=R(r) T(t)$, then we obtain

$$
2 \frac{T^{\prime}}{T}=\frac{1}{r R} \frac{\partial}{\partial r}\left(r R^{\prime}\right)=-\lambda^{2}, \quad \lambda \in \mathbb{R}
$$

so we see

$$
T(t)=A e^{-\lambda^{2} t / 4}
$$

since heat is leaving the system. Let $R(r)=J(\lambda r)$ so the ODE becomes

$$
r^{2} J^{\prime \prime}+r J^{\prime}+r^{2} J=0
$$

The solutions are given by Bessel functions of 0 th order(as we've seen in class and we'll them as J_{0}) since this is Bessel's equation. The boundary constraint enforces that

$$
J_{0}(2 \lambda)=0 \Longrightarrow \lambda=\frac{\lambda_{n}}{2} \quad \text { is the the } n \text {-th zero of } J_{0}
$$

(since one may show $J_{0}(x)$ has infinitely many zero's). Thus (by linearity)

$$
u(r, \theta, t)=\sum_{n \geqslant 1} c_{n} e^{-\lambda_{n}^{2} t / 16} J_{0}\left(\lambda_{n} r\right)
$$

We know that these Bessel functions are orthogonal via

$$
\frac{1}{2} \int_{0}^{2} r J_{0}\left(\frac{\lambda_{n_{1}}}{2} r\right) J_{0}\left(\frac{\lambda_{n_{2}}}{2} r\right) d r=\left(J_{0}^{\prime}\left(\lambda_{n_{1}}\right)\right)^{2} \delta_{n_{1}, n_{2}}
$$

Thus using Fourier's trick (multiplying u by $r J_{0}\left(\lambda_{n}\right)$ and integrating at $t=0$), we see

$$
c_{n}=\frac{1}{\left(J_{0}^{\prime}\left(\lambda_{n}\right)\right)^{2}} \int_{0}^{2} r(2-r) J_{0}\left(\frac{\lambda_{n}}{2} r\right) d r
$$

Question 3 Find the displacement $u(r, \theta)$ of a circular membrane of radius 1 with $a^{2}=4$ clamped along its circumference if its initial displacement is

$$
u(r, \theta, 0)=J_{0}\left(\lambda_{1} r\right)-0.25 J_{0}\left(\lambda_{3} r\right)
$$

and $u_{t}(0, r, \theta)=0$. Here J_{0} is the Bessel function of first kind of order 0 and λ_{k} are it's zeros.

Solution The wave equation dictates

$$
u_{t t}=a^{2} \Delta u=4 \Delta u=\frac{4}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{4}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

Note that the initial data is circularly symmetric, thus u is independent of θ. So we assume the solution is separable, i.e. $u=R(r) T(t)$, we see

$$
\frac{T^{\prime \prime}}{4 T}=\frac{1}{r R} \frac{\partial}{\partial r}\left(r R^{\prime}\right)=-\lambda^{2}, \quad \lambda \in \mathbb{R}
$$

Which shows us that T has solutions of the form (due to the initial data)

$$
T(t)=A \sin 2 \lambda t+B \cos 2 \lambda t \quad \& \quad T^{\prime}(0)=0 \Longrightarrow T(t)=B \cos 2 \lambda t
$$

and

$$
\frac{r}{R} \frac{\partial}{\partial r}\left(r R^{\prime}\right)+\lambda^{2} r^{2}=0
$$

$R(r)=J(\lambda r)$, then the ODE becomes

$$
r^{2} J^{\prime \prime}+r J^{\prime}+r^{2} J=0
$$

which is Bessel's Equation again, and we know the solutions are given by the Bessel function of order 0, J_{0}. The boundary is clamped, i.e. $u=0$, thus

$$
J_{0}(\lambda)=0 \Longrightarrow \lambda=\lambda_{n} \quad \text { is the the } n \text {-th zero of } J_{0}
$$

Therefore, by linearity we have

$$
u(r, \theta, t)=\sum_{n \geqslant 1} c_{n} J_{0}\left(\lambda_{n} r\right) \cos \left(2 \lambda_{n} t\right)
$$

The initial data shows us by comparison we have

$$
u(r, \theta, t)=J_{0}\left(\lambda_{1} r\right) \cos \left(2 \lambda_{1} t\right)-0.25 J_{0}\left(\lambda_{3} r\right) \cos \left(2 \lambda_{3} t\right)
$$

by orthogonality of the Bessel functions.

Question 4 Find the steady state temperature $u(r, \phi)$ in a sphere of unit radius if the temperature is independent of the polar angle θ and satisfies the boundary condition

$$
u(1, \phi)=P_{1}(\cos \phi)-P_{3}(\cos \phi)
$$

Here P_{n} is the n-th Legendre polynomial.

Solution Notice the steady state temperature must satisfy $\Delta u=0$ in the sphere, and

$$
\Delta u=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+\underbrace{\frac{1}{r^{2} \sin ^{2} \phi} \frac{\partial^{2} u}{\partial \theta^{2}}}_{=0}+\frac{1}{r^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial u}{\partial \phi}\right)
$$

So if we assume the solution is separable, $u=R(r) \Phi(\phi)$, we see that

$$
\frac{1}{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)=-\frac{1}{\Phi \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial \Phi}{\partial \phi}\right)=\lambda \in \mathbb{R}
$$

since the LHS is independent of ϕ and the RHS is independent of r, they both must be equal to a constant. Thus

$$
r^{2} R^{\prime \prime}+2 r R^{\prime}-\lambda R=0 \quad \& \quad \frac{1}{\sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial \Phi}{\partial \phi}\right)+\lambda \Phi=0
$$

Regularity at the North and South poles of the sphere forces $\lambda_{n}=n(n+1)$, and we know

$$
\frac{1}{\sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial}{\partial \phi}\left(P_{n}(\cos \phi)\right)\right)+n(n+1) P_{n}(\cos \phi)=0
$$

where P_{n} is the n-th Legendre polynomial which satisfies

$$
\int_{0}^{\pi} P_{m}(\cos \phi) P_{n}(\cos \phi) \sin \phi d \phi=\frac{2}{2 n+1} \delta_{m, n}
$$

We see the ODE in r is an Euler equation, we test $R=r^{k}$ and find

$$
k(k+1)=n(n+1) \Longrightarrow k=n \quad \& \quad k=-n-1
$$

but regularity at the origin forces $R(r)=A r^{n}$. Therefore, by linearity we have

$$
u(r, \phi)=\sum_{n \geqslant 0} a_{n} r^{n} P_{n}(\cos \phi)
$$

The boundary data shows

$$
P_{1}(\cos \phi)-P_{3}(\cos \phi)=\sum_{n \geqslant 0} a_{n} P_{n}(\cos \phi) \Longrightarrow a_{1}=1, a_{3}=-1 \quad \text { and } \quad a_{\text {else }}=0
$$

Thus the solution is given by

$$
u(r, \phi)=r P_{1}(\cos \phi)-r^{3} P_{3}(\cos \phi)
$$

Question 5 Consider the flow of heat in an infinitely long cylinder of radius 1 with $\alpha=1 / 5$. Let the surface of the cylinder temperature be held at 0 and let the initial distribution of the temperature be

$$
\left.u(r, \theta, z)\right|_{t=0}=4 J_{0}\left(\lambda_{2} r\right)-0.1 J_{0}\left(\lambda_{5} r\right)
$$

Solution The heat equation dictates

$$
25 u_{t}=\Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

Assume the solution is separable i.e. $u(r, \theta, z, t)=R(r) T(t)$, (where Z and Θ is dropped is the problem is independent of z and θ) then we obtain

$$
5 \frac{T^{\prime}}{T}=\frac{1}{r R} \frac{\partial}{\partial r}\left(r R^{\prime}\right)=-\lambda^{2}
$$

so we see

$$
T(t)=A \exp \left(-\lambda^{2} t / 25\right)
$$

since heat is leaving the system and

$$
\frac{r}{R} \frac{\partial}{\partial r}\left(r R^{\prime}\right)+\lambda^{2} r^{2}=0
$$

Let $R(r)=J(\lambda r)$ then we see

$$
r^{2} J^{\prime \prime}+r J^{\prime}+r^{2} J=0
$$

which has solutions of $J_{0}(\lambda r)$, and the boundary data implies

$$
J_{0}(\lambda)=0 \Longrightarrow \lambda=\lambda_{n} \quad \text { is the the } n \text {-th zero of } J_{0}
$$

Therefore

$$
u(r, t)=\sum_{n \geqslant 1} c_{n} J_{0}\left(\lambda_{n} r\right) \exp \left(-\lambda_{n}^{2} t / 25\right)
$$

By orthogonality(see previous questions), we see the initial data implies

$$
u(r, t)=4 J_{0}\left(\lambda_{2} r\right) \exp \left(-\lambda_{2}^{2} t / 25\right)-0.1 J_{0}\left(\lambda_{5} r\right) \exp \left(-\lambda_{2}^{2} t / 25\right)
$$

