
Assignment 6 - MATC46
Due March 31 2016

Question 1 A 3 × 3 square plate with α = 1/2 is heated in such a way that the temperature is distributed

with f(x, y) = y. After that the temperature at its left and right edges being held at 0 and the lower and upper

edges being insulated. Find a series expansion that gives the temperature in the plate for t > 0.

Solution The heat equation dictates

ut = α2∆u =⇒ 4ut =
∂2u

∂x2
+
∂2u

∂y2

Assume the solution is separable to deduce ( i.e. u(x, y, t) = X(x)Y (y)T (t)),

4
T ′

T
=
X ′′

X
+
Y ′′

Y
= −λ2 where λ ∈ R

so we see

T (t) = Ae−λ
2t/4

since heat is leaving the system (this forces a negative eigenvalue). Splitting the spacial part shows

X ′′ = −m2X & Y ′′ = −n2Y where m2 + n2 = λ2

=⇒ X = A cosmx+B sinmx & Y = C cosny +D sinny

Define our space to be Ω = [0, 3]× [0, 3] and we see the boundary data for X gives:

X(0) = X(3) = 0 =⇒ A = 0 & sin 3m = 0 =⇒ m =
n1π

3
, n1 ∈ N

For y, we see

Y ′(0) = Y ′(3) = 0 =⇒ D = 0 & sin 3n = 0 =⇒ n =
n2π

3
, n2 ∈ N

Now using linearity, we know the solution must be a sum of all the eigenfunctions we’ve found:

u(x, y, t) =
∑

n1,n2>0

cn1,n2
exp

(
−π

2(n21 + n22)

36
t

)
sin
(n1πx

3

)
cos
(n2πy

3

)
The initial data will give us the coefficients of the series by using orthogonality of the eigenfunctions. We see

f(x, y) = y at t = 0, so when n2 6= 0,we have

cn1,n2 =
4

9

∫ 3

0

∫ 3

0

y sin(n1πx/3) cos(n2πy/3)dxdy = −12
(1− (−1)n1)(1− (−1)n2)

π3n1n22

and when n2 = 0

cn1,0 =
2

9

∫ 3

0

∫ 3

0

y sin(n1πx/3)dxdy = 3
1− (−1)n1

πn1
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Assignment 6 MATC46

Question 2 A circular plate with radius 2 and with α = 1/2 is heated in such a way that the temperature is

distributed with f(r, θ) = 2− r. After that the temperature on the boundary being held at 0. Write the formal

Bessel-Fourier expansion that gives the temperature in the plate for t > 0. Write the coefficients via integrals

involving Bessel functions.

Solution The heat equation dictates

4ut = ∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2

Note that the initial data is circularly symmetric, thus u is independent of θ. So we assume the solution is

separable, i.e. u = R(r)T (t), then we obtain

2
T ′

T
=

1

rR

∂

∂r
(rR′) = −λ2, λ ∈ R

so we see

T (t) = Ae−λ
2t/4

since heat is leaving the system. Let R(r) = J(λr) so the ODE becomes

r2J ′′ + rJ ′ + r2J = 0

The solutions are given by Bessel functions of 0th order(as we’ve seen in class and we’ll them as J0) since this

is Bessel’s equation. The boundary constraint enforces that

J0(2λ) = 0 =⇒ λ =
λn
2

is the the n-th zero of J0

(since one may show J0(x) has infinitely many zero’s). Thus (by linearity)

u(r, θ, t) =
∑
n>1

cne
−λ2

nt/16J0(λnr)

We know that these Bessel functions are orthogonal via

1

2

∫ 2

0

rJ0

(
λn1

2
r

)
J0

(
λn2

2
r

)
dr = (J ′0(λn1

))
2
δn1,n2

Thus using Fourier’s trick (multiplying u by rJ0(λn) and integrating at t = 0), we see

cn =
1

(J ′0(λn))2

∫ 2

0

r(2− r)J0
(
λn
2
r

)
dr

Question 3 Find the displacement u(r, θ) of a circular membrane of radius 1 with a2 = 4 clamped along its

circumference if its initial displacement is

u(r, θ, 0) = J0(λ1r)− 0.25J0(λ3r).

and ut(0, r, θ) = 0. Here J0 is the Bessel function of first kind of order 0 and λk are it’s zeros.
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Solution The wave equation dictates

utt = a2∆u = 4∆u =
4

r

∂

∂r

(
r
∂u

∂r

)
+

4

r2
∂2u

∂θ2

Note that the initial data is circularly symmetric, thus u is independent of θ. So we assume the solution is

separable, i.e. u = R(r)T (t), we see

T ′′

4T
=

1

rR

∂

∂r
(rR′) = −λ2, λ ∈ R

Which shows us that T has solutions of the form (due to the initial data)

T (t) = A sin 2λt+B cos 2λt & T ′(0) = 0 =⇒ T (t) = B cos 2λt

and
r

R

∂

∂r
(rR′) + λ2r2 = 0

R(r) = J(λr), then the ODE becomes

r2J ′′ + rJ ′ + r2J = 0

which is Bessel’s Equation again, and we know the solutions are given by the Bessel function of order 0, J0.

The boundary is clamped, i.e. u=0, thus

J0(λ) = 0 =⇒ λ = λn is the the n-th zero of J0

Therefore, by linearity we have

u(r, θ, t) =
∑
n>1

cnJ0(λnr) cos(2λnt)

The initial data shows us by comparison we have

u(r, θ, t) = J0(λ1r) cos(2λ1t)− 0.25J0(λ3r) cos(2λ3t)

by orthogonality of the Bessel functions.

Question 4 Find the steady state temperature u(r, φ) in a sphere of unit radius if the temperature is inde-

pendent of the polar angle θ and satisfies the boundary condition

u(1, φ) = P1(cosφ)− P3(cosφ).

Here Pn is the n-th Legendre polynomial.

Solution Notice the steady state temperature must satisfy ∆u = 0 in the sphere, and

∆u =
1

r2
∂

∂r

(
r2
∂u

∂r

)
+
�

���
��

1

r2 sin2 φ

∂2u

∂θ2︸ ︷︷ ︸
=0

+
1

r2 sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)

So if we assume the solution is separable, u = R(r)Φ(φ), we see that

1

R

∂

∂r

(
r2
∂R

∂r

)
= − 1

Φ sinφ

∂

∂φ

(
sinφ

∂Φ

∂φ

)
= λ ∈ R
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since the LHS is independent of φ and the RHS is independent of r, they both must be equal to a constant.

Thus

r2R′′ + 2rR′ − λR = 0 &
1

sinφ

∂

∂φ

(
sinφ

∂Φ

∂φ

)
+ λΦ = 0

Regularity at the North and South poles of the sphere forces λn = n(n+ 1), and we know

1

sinφ

∂

∂φ

(
sinφ

∂

∂φ
(Pn(cosφ))

)
+ n(n+ 1)Pn(cosφ) = 0

where Pn is the n-th Legendre polynomial which satisfies∫ π

0

Pm(cosφ)Pn(cosφ) sinφdφ =
2

2n+ 1
δm,n

We see the ODE in r is an Euler equation, we test R = rk and find

k(k + 1) = n(n+ 1) =⇒ k = n & k = −n− 1

but regularity at the origin forces R(r) = Arn. Therefore, by linearity we have

u(r, φ) =
∑
n>0

anr
nPn(cosφ)

The boundary data shows

P1(cosφ)− P3(cosφ) =
∑
n>0

anPn(cosφ) =⇒ a1 = 1, a3 = −1 and aelse = 0

Thus the solution is given by

u(r, φ) = rP1(cosφ)− r3P3(cosφ)

Question 5 Consider the flow of heat in an infinitely long cylinder of radius 1 with α = 1/5. Let the surface

of the cylinder temperature be held at 0 and let the initial distribution of the temperature be

u(r, θ, z)|t=0 = 4J0(λ2r)− 0.1J0(λ5r)

Solution The heat equation dictates

25ut = ∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+
∂2u

∂z2

Assume the solution is separable i.e. u(r, θ, z, t) = R(r)T (t), (where Z and Θ is dropped is the problem is

independent of z and θ) then we obtain

5
T ′

T
=

1

rR

∂

∂r
(rR′) = −λ2

so we see

T (t) = A exp(−λ2t/25)

since heat is leaving the system and
r

R

∂

∂r
(rR′) + λ2r2 = 0
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Let R(r) = J(λr) then we see

r2J ′′ + rJ ′ + r2J = 0

which has solutions of J0(λr), and the boundary data implies

J0(λ) = 0 =⇒ λ = λn is the the n-th zero of J0

Therefore

u(r, t) =
∑
n>1

cnJ0(λnr) exp(−λ2nt/25)

By orthogonality(see previous questions), we see the initial data implies

u(r, t) = 4J0(λ2r) exp(−λ22t/25)− 0.1J0(λ5r) exp(−λ22t/25)
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