Assignment 8

MATC34 - Complex Variables - Fall 2015

Question 1 Find all singular points of the function

$$
f(z)=\frac{z}{z^{4}-1}-\frac{\sin (2 z)}{z^{4}}
$$

If it is a pole, determine the order.

Solution We see the singular points are given by the roots of

$$
z^{4}-1=(z-1)(z+1)(z-i)(z+i)=0 \quad \& \quad z^{4}=0
$$

Clearly all the singular points from $z^{4}-1$ are $z= \pm 1, \pm i$ and they are simple poles. The pole at $z=0$ is of third order since

$$
\lim _{z \rightarrow 0} z^{3} \frac{\sin (2 z)}{z^{4}}=2
$$

Question 2 Using Cauchy's Residue formula, find

$$
\int_{C} \frac{\cot (\pi z)}{1+z^{4}} d z
$$

where C is the positively oriented boundary of the rectangle with vertices at $(3 \pm i) / 2,(-1 \pm i) / 2$.

Solution We first will find the singular points of the integrand,

$$
\cot (\pi z)=\frac{\cos (\pi z)}{\sin (\pi z)}=\infty \Longleftrightarrow \sin (\pi z)=0 \Longrightarrow z=n, \quad n \in \mathbb{Z} \quad \& \quad 1+z^{4}=0 \Longrightarrow z=\frac{1 \pm i}{\sqrt{2}}, \frac{-1 \pm i}{\sqrt{2}}
$$

We see that $z=0,1$ are the only poles that lie inside C. We also see they're both simple, so the residue theorem tells us

$$
\int_{C} \frac{\cot (\pi z)}{1+z^{4}} d z=2 \pi i(\operatorname{Res}(f, 0)+\operatorname{Res}(f, 1))=2 \pi i\left(\lim _{z \rightarrow 0} z \frac{\cot (\pi z)}{1+z^{4}}+\lim _{z \rightarrow 1}(z-1) \frac{\cot (\pi z)}{1+z^{4}}\right)=2 \pi i\left(\frac{1}{\pi}+\frac{1}{2 \pi}\right)=3 i
$$

Question 3 Using the reside at $z=\infty$, find the following integral

$$
\int_{|z|=4} \frac{z^{7}}{(z-3)\left(z^{5}-1\right)} d z, \quad \int_{|z|=4} \frac{1}{(z-3)\left(z^{5}-1\right)} d z, \quad \int_{|z|=2} \frac{1}{(z-3)\left(z^{5}-1\right)} d z
$$

Solution We substitute $w=1 / z, d w=-d z / z^{2}$ into the integrands to obtain

$$
\int_{|w|=1 / 4} \frac{1}{w^{3}(1-3 w)\left(1-w^{5}\right)} d w, \quad \int_{|w|=1 / 4} \frac{w^{4}}{(1-3 w)\left(1-w^{5}\right)} d w, \quad \int_{|w|=1 / 2} \frac{w^{4}}{(1-3 w)\left(1-w^{5}\right)} d w
$$

where we preserved positive orientation. We see the only singular points inside the domains are $w=0$ for the first integral, and $w=1 / 3$ for the 3rd. We see that the pole at $w=0$ is of third order, and the pole at $w=1 / 3$ is simple in the 3rd integral. Thus we calculate the residues of these new integrands, call each integrand g_{i}, then

$$
\operatorname{Res}\left(g_{1}, 0\right)=\lim _{w \rightarrow 0} \frac{1}{2!} \frac{d^{2}}{d w^{2}} \frac{1}{(1-3 w)\left(1-w^{5}\right)}=\lim _{w \rightarrow 0} \frac{1}{2!} \frac{d}{d w} \frac{3+\mathcal{O}(w)}{\left(1-3 w-w^{5}+3 w^{6}\right)^{2}}=\lim _{w \rightarrow 0} \frac{9+\mathcal{O}(\omega)}{\left(1-3 w-w^{5}+3 w^{6}\right)^{3}}=9
$$

$$
\operatorname{Res}\left(g_{3}, 1 / 3\right)=\lim _{w \rightarrow 1 / 3}(w-1 / 3) \frac{w^{4}}{(1-3 w)\left(1-w^{5}\right)}=-\frac{1}{\left(3^{5}-1\right)}=-\frac{1}{242}
$$

The residue theorem now allows us to easily calculate the integrals since we've computed the residues, they are

$$
\int_{|z|=4} \frac{z^{7}}{(z-3)\left(z^{5}-1\right)} d z=18 \pi i, \quad \int_{|z|=4} \frac{1}{(z-3)\left(z^{5}-1\right)} d z=0, \quad \int_{|z|=2} \frac{1}{(z-3)\left(z^{5}-1\right)} d z=-\frac{2 \pi i}{242}=-\frac{\pi i}{121}
$$

