Assignment 7

MATC34 - Complex Variables - Fall 2015

Question 1 Find the principal part of the Laurent Series and identify the residue for

$$
f(z)=\frac{\sin z^{2}}{z^{3}(1+z)}
$$

at $z=0$.

Solution We know the power series for $\sin z$ and $1 /(1-z)$ already, so we have for free that

$$
\begin{gathered}
\sin z^{2}=z^{2}-\frac{z^{6}}{3!}+\mathcal{O}\left(z^{10}\right) \\
\frac{1}{1+z}=1-z+\mathcal{O}\left(z^{2}\right)
\end{gathered}
$$

Thus by simple multiplication we see

$$
\begin{aligned}
f(z) & =\frac{\sin z^{2}}{z^{3}(1+z)} \\
& =\frac{1}{z^{3}}\left(z^{2}-\frac{z^{6}}{3!}+\mathcal{O}\left(z^{10}\right)\right)\left(1-z+\mathcal{O}\left(z^{2}\right)\right) \\
& =\underbrace{\frac{1}{z}}_{\text {principal part }}-1+z+\mathcal{O}\left(z^{2}\right)
\end{aligned}
$$

Thus we can read off the principal part, and we see the coefficient on the $1 / z$ term is 1 , which is also the residue of $f(z)$ at $z_{0}=0$.

Question 2 Derive the Laurent series representation

$$
\frac{e^{z}}{(z+1)^{2}}=\frac{1}{e}\left(\sum_{n=0}^{\infty} \frac{(z+1)^{n}}{(n+2)!}+\frac{1}{z+1}+\frac{1}{(z+1)^{2}}\right), \quad z \neq 1
$$

Solution We first compute the power series of e^{z} entered around $z=-1$ using the trick from last week. We have

$$
e^{z}=\frac{1}{e} e^{z+1}=\frac{1}{e} \sum_{n=0}^{\infty} \frac{(z+1)^{n}}{n!}
$$

Thus

$$
\frac{e^{z}}{(z+1)^{2}}=\frac{1}{e} \sum_{n=0}^{\infty} \frac{(z+1)^{n-2}}{n!}=\frac{1}{e}\left(\sum_{n=0}^{\infty} \frac{(z+1)^{n}}{(n+2)!}+\frac{1}{z+1}+\frac{1}{(z+1)^{2}}\right), \quad z \neq 1
$$

Question 3 Evaluate

$$
\int_{|z|=1} \cos \left(\frac{1}{z^{2}}\right) e^{1 / z} d z
$$

Solution We know the power series representation about $z_{0}=0$ for both functions, thus we see

$$
\begin{aligned}
\cos \left(\frac{1}{z^{2}}\right) e^{1 / z} & =\left(1-\frac{1}{2!z^{4}}+\mathcal{O}\left(\frac{1}{z^{8}}\right)\right)\left(1+\frac{1}{z}+\frac{1}{2 z^{2}}+\mathcal{O}\left(\frac{1}{z^{3}}\right)\right) \\
& =1+\frac{1}{z}+\frac{1}{2 z^{2}}+\mathcal{O}\left(\frac{1}{z^{3}}\right)
\end{aligned}
$$

As we already know, we have that

$$
\int_{|z|=1} \frac{d z}{z^{n}}=\left\{\begin{array}{cc}
2 \pi i & n=1 \\
0 & n \neq 1
\end{array}\right.
$$

Thus we see

$$
\int_{|z|=1} \cos \left(\frac{1}{z^{2}}\right) e^{1 / z} d z=2 \pi i
$$

Alternate Solution Take a change of variables to the integrand, $w=1 / z$, we see $d w=-d z / z^{2}$, therefore

$$
\int_{|z|=1} \cos \left(\frac{1}{z^{2}}\right) e^{1 / z} d z=\int_{|w|=1} \frac{\cos \left(w^{2}\right) e^{w}}{w^{2}} d w
$$

note the double negative via the change of orientation. By expanding out both terms into power series, we see $\int_{|w|=1} \frac{\cos \left(w^{2}\right) e^{w}}{w^{2}} d w=\int_{|w|=1} \frac{1}{w^{2}}\left(1-\frac{w^{2}}{2}+\mathcal{O}\left(w^{4}\right)\right)\left(1+w+\frac{w^{2}}{2}+\mathcal{O}\left(w^{3}\right)\right) d w=\int_{|w|=1}\left(\frac{1}{w^{2}}+\frac{1}{w}+\mathcal{O}(w)\right) d w$

Thus we see

$$
\int_{|w|=1}\left(\frac{1}{w^{2}}+\frac{1}{w}+\mathcal{O}(w)\right) d w=2 \pi i
$$

Question 4 Evaluate the integral using Cauchy's Residue theorem.

$$
\int_{C} \frac{\exp (-z)}{\sin \left(z^{2}+z\right)} d z
$$

where $C=\{z:|z|=3 / 2\}$.

Solution We know e^{-z} is an entire function, thus we have to find the zeros of $\sin \left(z^{2}+z\right)$ (i.e. the poles in question) to apply the residue theorem. We see

$$
\sin (z(z+1))=0 \Longrightarrow z^{2}+z=n \pi, \quad n \in \mathbb{Z} \Longrightarrow z=\frac{-1 \pm \sqrt{1+4 n \pi}}{2}
$$

Since C is just the circle of radius 1 centred at 0 , we see 2 poles are inside, specifically at $z=-1$ and $z=0$. We calculate the residues:

$$
\operatorname{Res}(f, 0)=\lim _{z \rightarrow 0} z \frac{\exp (-z)}{\sin \left(z^{2}+z\right)}=\lim _{z \rightarrow 0} \frac{z}{\sin \left(z^{2}+z\right)}=\lim _{z \rightarrow 0} \frac{1}{(2 z+1) \cos \left(z^{2}+z\right)}=1
$$

$$
\operatorname{Res}(f,-1)=\lim _{z \rightarrow-1}(z+1) \frac{\exp (-z)}{\sin \left(z^{2}+z\right)}=\lim _{z \rightarrow-1} \frac{e(z+1)}{\sin \left(z^{2}+z\right)}=\lim _{z \rightarrow-1} \frac{e}{(2 z+1) \cos \left(z^{2}+z\right)}=-e
$$

The residue theorem now tells us

$$
\int_{C} \frac{\exp (-z)}{\sin \left(z^{2}+z\right)} d z=2 \pi i(1-e)
$$

Question 5 Calculated the integral

$$
\int_{C} \frac{\cos (\pi z)}{\sin (\pi z)\left(1+z^{4}\right)} d z
$$

where C is the counterclockwise oriented rectangle with vertices at $z_{1,2}=\frac{ \pm 3+i}{2}, z_{3,4}=\frac{ \pm 3-i}{2}$

Solution We see the poles of the function in question are given by

$$
\sin (\pi z)=0 \Longrightarrow z=k \quad k \in \mathbb{Z} \quad \& \quad 1+z^{4}=0 \Longrightarrow z=\exp \left(i \frac{\pi}{4}+k \frac{\pi}{2}\right), \quad k=0,1,2,3
$$

If we check which poles lie inside C, we see the only poles we have to consider are $z=0, \pm 1$. We can now compute the residues and use the residue theorem. Note that all the poles are simple, thus we have

$$
\begin{gathered}
\operatorname{Res}(f, 0)=\lim _{z \rightarrow 0} z \frac{\cos (\pi z)}{\sin (\pi z)\left(1+z^{4}\right)}=\lim _{z \rightarrow 0} \frac{z}{\sin (\pi z)}=\frac{1}{\pi} \\
\operatorname{Res}(f, \pm 1)=\lim _{z \rightarrow \pm 1}(z \pm 1) \frac{\cos (\pi z)}{\sin (\pi z)\left(1+z^{4}\right)}=\lim _{z \rightarrow \pm 1}-\frac{z \pm 1}{2 \sin (\pi z)}=\frac{1}{2 \pi}
\end{gathered}
$$

Thus we have

$$
\int_{C} \frac{\cos (\pi z)}{\sin (\pi z)\left(1+z^{4}\right)} d z=2 \pi i(\operatorname{Res}(f, 0)+\operatorname{Res}(f, 1)+\operatorname{Res}(f,-1))=4 i
$$

