A4-Q1

MATC34 - Complex Variables - Fall 2015

Solutions

Q1 Verify Cauchy's Theorem (without using it) for $f(z)=1 / z$ around $\{z:|z|=4\}$ and $\left\{z:\|z\|_{\infty}=1\right\}$. i.e. Compute

$$
\int_{\{z:|z|=4\}} f(z) d z \quad \& \quad \int_{\{z:||z|| \infty=1\}} f(z) d z
$$

and show they are equal.

Solution You have to parametrize both curves, so let's first recall the definition of how to compute line integrals.

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Now let's start with the circle. The simplest parameterization you know is through Euler's Identity i.e.

$$
z=4 e^{i \theta}=4(\cos \theta+i \sin \theta)
$$

i.e. our the parametrization is given by $\gamma(t)=4 e^{i t}, \gamma^{\prime}(t)=4 i e^{i t}$, and we run $t \in[0,2 \pi)$. Thus

$$
\int_{\{z:|z|=4\}} \frac{d z}{z}=\int_{0}^{2 \pi} \frac{4 i e^{i t}}{4 e^{i t}} d t=i \int_{0}^{2 \pi} d t=2 \pi i
$$

To handle the square, let's break the integral into 4 pieces (i.e. the 4 sides) and be mindful of the orientation: the right side is given by the parameterization $\gamma_{1}(t)=1+i t$ with t going from -1 to 1 , the left side is given by $\gamma_{2}(t)=-1+i t$ with t going from 1 to -1 , the top side is given by $\gamma_{3}(t)=t+i$ with t going from 1 to -1 , and the bottom side is given by $\gamma_{4}(t)=t-i$ with t going from -1 to 1 . Thus we have

$$
\begin{aligned}
\int_{\left\{z:\|z\|_{\infty}=1\right\}} \frac{d z}{z} & =\int_{\gamma_{1}} \frac{d z}{z}+\int_{\gamma_{2}} \frac{d z}{z}+\int_{\gamma_{3}} \frac{d z}{z}+\int_{\gamma_{4}} \frac{d z}{z} \\
& =\int_{-1}^{1} \frac{i d t}{1+i t}+\int_{1}^{-1} \frac{i d t}{-1+i t}+\int_{1}^{-1} \frac{d t}{t+i}+\int_{-1}^{1} \frac{d t}{t-i} \\
& =\int_{-1}^{1} \frac{(i+t) d t}{1+t^{2}}+\int_{1}^{-1} \frac{(-i+t) d t}{1+t^{2}}+\int_{1}^{-1} \frac{(t-i) d t}{1+t^{2}}+\int_{-1}^{1} \frac{(t+i) d t}{1+t^{2}}
\end{aligned}
$$

Notice that all components with t in the numerator are odd, thus

$$
\int_{\left\{z:\|z\|_{\infty}=1\right\}} \frac{d z}{z}=4 i \int_{-1}^{1} \frac{d t}{1+t^{2}}
$$

You should be able to handle the integral from your knowledge from a standard calculus class(use a trig substitution), thus we see

$$
\int_{\left\{z:\|z\|_{\infty}=1\right\}} \frac{d z}{z}=4 i \int_{-1}^{1} \frac{d t}{1+t^{2}}=4 i \frac{\pi}{2}=2 \pi i
$$

Notice that the expression is not multi-valued or anything weird... Clearly the integrals are the same value.

Alternate integration Instead of rationalizing the denominator, let's handle the logarithm we'd get otherwise.

$$
\begin{aligned}
\int_{\left\{z:\|z\|_{\infty}=1\right\}} \frac{d z}{z} & =\int_{-1}^{1} \frac{i d t}{1+i t}+\int_{1}^{-1} \frac{i d t}{-1+i t}+\int_{1}^{-1} \frac{d t}{t+i}+\int_{-1}^{1} \frac{d t}{t-i} \\
& =\left.\ln (1+i t)\right|_{-1} ^{1}-\left.\ln (-1+i t)\right|_{-1} ^{1}-\left.\ln (t+i)\right|_{-1} ^{1}+\left.\ln (t-i)\right|_{-1} ^{1}
\end{aligned}
$$

Note that

$$
1 \pm i=\sqrt{2} e^{ \pm i \pi / 4}, \quad-1 \pm i=\sqrt{2} e^{i \pi \pm i \pi / 4}, \quad \pm 1+i=\sqrt{2} e^{i \pi / 2 \pm i \pi / 4}, \quad \pm 1-i=\sqrt{2} e^{3 i \pi / 2 \pm i \pi / 4}
$$

Thus, we have (note that whatever branch you choose, this won't change the result since it gets added and subtracted)

$$
\begin{aligned}
\left.\ln (1+i t)\right|_{-1} ^{1} & =\ln (1+i)-\ln (1-i)=i \frac{\pi}{2} \\
-\left.\ln (-1+i t)\right|_{-1} ^{1} & =\ln (-1-i)-\ln (-1+i)=i \frac{\pi}{2} \\
-\left.\ln (t+i)\right|_{-1} ^{1} & =\ln (-1+i)-\ln (1+i)=i \frac{\pi}{2} \\
\left.\ln (t-i)\right|_{-1} ^{1} & =\ln (1-i)-\ln (-1-i)=i \frac{\pi}{2}
\end{aligned}
$$

If we put it all together, we see

$$
\int_{\left\{z:\|z\|_{\infty}=1\right\}} \frac{d z}{z}=4\left(i \frac{\pi}{2}\right)=2 \pi i
$$

