Tutorial 8

MAT334 - Complex Variables - Spring 2016
 Christopher J. Adkins

Solutions

2.5-\# 1,5 Locate each of the singularities of the given functions and tell whether it is a removable singularity, a pole, or an essential singularity. If the singularity is removable, give the value of the function at the point;if the singularity is a pole, give the order of the pole.

$$
\frac{e^{z}-1}{z} \quad \& \quad \frac{2 z+1}{z+2}
$$

Solution We know that

$$
e^{z}=\sum_{n \geqslant 0} \frac{z^{n}}{n!}
$$

Thus

$$
\frac{e^{z}-1}{z}=\sum_{n \geqslant 1} \frac{z^{n-1}}{n!}=1+\frac{z}{2}+\mathcal{O}\left(z^{2}\right)
$$

So the singularity of the function is at $z=0$ and removable, the value of the function at $z=0$ is 1 . For the second function, note

$$
\frac{2 z+1}{z+2}=\frac{-3}{z+2}+2
$$

is the Laurent series for the function. Thus we see the simple pole at $z_{0}=-2$.
2.5-\#7,10 Find the Laurent series for the given function about the indicated pint. Also, give the residue of the function at the point,

$$
\frac{e^{z}-1}{z^{2}} ; \quad z_{0}=0 \quad \& \quad \frac{z}{(\sin z)^{2}} ; \quad z_{0}=0 \text { (four terms of the Laurent series) }
$$

Solution From the previous question, we easily see that

$$
\frac{e^{z}-1}{z^{2}}=\sum_{n \geqslant 1} \frac{z^{n-2}}{n!}=\frac{1}{z}+\frac{1}{2}+\mathcal{O}\left(z^{2}\right)
$$

We read the residue off the $1 / z$ term as $\operatorname{Res}(f ; 0)=1$. For the second function, we compute $z / \sin z=$ $a_{0}+a_{2} z^{2}+a_{4} z^{4}+\mathcal{O}\left(z^{6}\right)$.

$$
\begin{aligned}
z=\sin z \frac{z}{\sin z} & =\left(z-\frac{z^{3}}{6}+\frac{z^{5}}{120}-\mathcal{O}\left(z^{7}\right)\right)\left(a_{0}+a_{2} z^{2}+a_{4} z^{4}+\mathcal{O}\left(z^{6}\right)\right) \\
& =a_{0} z+\left(a_{2}-1 / 6\right) z^{3}+\left(a_{4}-a_{2} / 6+1 / 120\right) z^{5}+\mathcal{O}\left(z^{7}\right)
\end{aligned}
$$

Thus

$$
\frac{z}{\sin z}=1+\frac{z^{2}}{6}+\frac{7}{360} z^{4}+\mathcal{O}\left(z^{6}\right)
$$

So we see

$$
\begin{aligned}
\frac{z}{(\sin z)^{2}}=\left(\frac{z}{\sin z}\right)\left(\frac{1}{\sin z}\right) & =\left(1+\frac{z^{2}}{6}+\frac{7}{360} z^{4}+\mathcal{O}\left(z^{6}\right)\right)\left(\frac{1}{z}+\frac{z}{6}+\frac{7}{360} z^{3}+\mathcal{O}\left(z^{5}\right)\right) \\
& =\frac{1}{z}+\frac{z}{3}+\frac{z^{3}}{15}+\mathcal{O}\left(z^{5}\right)
\end{aligned}
$$

2.5-\# 15 If f is analytic in $0<\left|z-z_{0}\right|<R$ and has a pole or order k at z_{0}, show that

$$
\operatorname{Res}\left(\frac{f^{\prime}}{f} ; z_{0}\right)=-k
$$

Solution Write

$$
f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{k}}
$$

where $g(z)$ is analytic in $\left|z-z_{0}\right|<R$ and $g\left(z_{0}\right) \neq 0$. We see that

$$
\frac{f^{\prime}}{f}=\frac{g^{\prime}}{g}-\frac{k}{\left(z-z_{0}\right)}
$$

Since g is analytic, we know that g^{\prime} / g is analytic around z_{0}. Thus we simply read the coefficient off the $1 /\left(z-z_{0}\right)$ to find the residue.

$$
\operatorname{Res}\left(\frac{f^{\prime}}{f} ; z_{0}\right)=\operatorname{Res}\left(-\frac{k}{\left(z-z_{0}\right)}+\frac{g^{\prime}}{g} ; z_{0}\right)=-k
$$

2.5-\# 18 Here is an alternate proof that

$$
\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} f(z) d z=\operatorname{Res}\left(f ; z_{0}\right)
$$

is independent of r. Assume that $z_{0}=0$ with no loss of generality. We have

$$
\frac{\partial}{\partial t}\left(f\left(r e^{i t}\right) e^{i t}\right)=i e^{i t} f\left(r e^{i t}\right)+i r e^{2 i t} f^{\prime}\left(r e^{i t}\right)
$$

and that

$$
\frac{d}{d r}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} r f\left(r e^{i t}\right) e^{i t} d t\right]=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[f\left(r e^{i t}\right)+r f^{\prime}\left(r e^{i t}\right) e^{i t}\right] e^{i t} d t
$$

Thus

$$
\frac{d}{d r}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} r f\left(r e^{i t}\right) e^{i t} d t\right]=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{\partial}{\partial t}\left(f\left(r e^{i t}\right) e^{i t}\right) d t=\frac{f(r)-f(r)}{2 \pi i}=0
$$

We then can conclude that

$$
\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} f(z) d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i t}\right) r e^{i t} d t
$$

is independent of r.
2.5-\#22 b),d) Find the Laurent series about $z_{0}=0$ for the following function, valid in the indicated regions.

$$
z^{4} \sin \left(\frac{1}{z}\right) ; \quad 0<|z|<\infty \quad \& \quad \exp \left(z+\frac{1}{z}\right) ; \quad 0<|z|<\infty
$$

Solution Recall

$$
\sin z=\sum_{n \geqslant 0}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}
$$

Thus

$$
z^{4} \sin \left(\frac{1}{z}\right)=\sum_{n \geqslant 0} \frac{(-1)^{n} z^{3-2 n}}{(2 n+1)!}
$$

For the second function, we note that

$$
\exp \left(z+\frac{1}{z}\right)=\exp (z) \exp \left(\frac{1}{z}\right)=\left(\sum_{n \geqslant 0} \frac{z^{n}}{n!}\right)\left(\sum_{m \geqslant 0} \frac{1}{m!z^{m}}\right)
$$

multiplying out the series product gives

$$
\exp \left(z+\frac{1}{z}\right)=\sum_{k \in \mathbb{Z}} c_{k} z^{k} \quad \text { where } c_{k}=\sum_{n-m=k} \frac{1}{n!m!}=\sum_{m \geqslant \max (0,-k)} \frac{1}{(m+k)!m!}
$$

or we may use the binomial theorem to see

$$
\exp (z+1 / z)=\sum_{k \geqslant 0} \frac{(z+1 / z)^{k}}{k!}=\sum_{k \geqslant 0} \frac{1}{k!} \sum_{n=0}^{k}\binom{k}{n} z^{k-2 n}=\sum_{k \geqslant 0} \sum_{n=0}^{k} \frac{z^{k-2 n}}{(k-n)!n!}
$$

2.5-\#27 a), c) Classify the nature of the singularity at ∞ of each of the following functions. If the singularity is removable, give the value at ∞. If the singularity is a pole, give its order; in each case find the first few terms in the Laurent series about ∞.

$$
3 z^{2}+4-\frac{1}{z} \quad \& \quad \frac{z^{2}}{z-4}
$$

Solution To consider ∞, we introduce the change of variables $z=1 / w$. Then the functions look like

$$
\frac{3}{w^{2}}+4-w \quad \& \quad \frac{1}{w(1-4 w)}=\sum_{n \geqslant 0}(4 w)^{n-1}
$$

Thus we see that the first function has a pole of order 2 at ∞ and the second function has a simple pole at ∞.

