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Christopher J. Adkins

Solutions

2.3 - # 3 Evaluate ∫
|z+1|=2

z2

4− z2
dz

Solution Note we may rewrite the integrand as∫
|z+1|=2

z2

4− z2
dz =

∫
|z+1|=2

z2

2− z︸ ︷︷ ︸
=f(z)

dz

z + 2

and notice that −2 ∈ {z : |z + 1| < 2}. Thus Cauchy’s Integral Formula tells us∫
|z+1|=2

z2

4− z2
dz = 2πif(−2) = 2πi

2.3 - # 7 Evaluate ∫ 2π

0

dθ

a+ b cos θ
, a > b > 0

Solution Define γ = {z : |z| = b}, then

b cos θ =
1

2

(
z +

b2

z

)
=
z2 + b2

2z
since z = beiθ on γ

Therefore, by definition of parameterizing a path integral, we have (note dz = izdθ).∫ 2π

0

dθ

a+ b cos θ
=

1

i

∫
γ

2dz

2az + z2 + b2

We may factor the polynomial in the bottom via the quadratic formula, we see

z2 + 2az + b2 = 0 =⇒ z± = −a±
√
a2 − b2

Note since a > b > 0, we have that

−a+
√
a2 − b2 ∈ {z : |z| < b}

Thus Cauchy’s Integral Formula gives us ∫ 2π

0

dθ

a+ b cos θ
=

2π√
a2 − b2
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2.3 - # 12 Evaluate ∫
γ

sin zdz

where γ is any curve joining i to π.

Solution Note that
d

dz
(− cos z) = sin zdz

Thus ∫
γ

sin zdz = − cos z
∣∣∣π
i

= − cosπ + cos i = 1 + cosh(1)

2.3 - # 16 Prove if f is analytic and never zero on a domain D, then |f(z)| has no local minima in D. That

is, the graph (x, y, |f(x+ iy)|) has no “pits”. Use the fact that an analytic function g cannot have a strict local

maximum by

|g(z)| 6 max
θ∈[0,2π)

|g(z + reiθ)|

where r is small enough so z + reiθ is within the domain of analyticity.

Solution Since f is non-zero on D, consider

g =
1

f

Note g is analytic since f is analytic. A local maxima of g corresponds to a local minima of f . Using the fact

stated the in question allows us to deduce that g has cannot have strict local maximum, which implies that f

cannot have a local minima in D.

2.4 - # 6,8 Find the order of each zero for the given functions

Log(1− z), |z| < 1 &
z

z2 + 1

Solution Using a geometric series, we see

−Log(1− z) =

∫
dz

1− z
=

∫ ∑
n>0

zndz =
∑
n>0

∫
zndz = z

∑
n>0

zn

n+ 1

Thus Log(1 − z) has a simple pole at z = 0(note the use of Fubini’s to exchange the integral and sum). The

second function has simple zero at z = 0, and simple poles at z = ±i.

2.4 - # 16 Find the first four terms of the power series expansion around z0 = 0 for tan z

Solution We know that

tan z =
sin z

cos z
& cos z = 1− z2

2
+
z4

24
−O(z6) & sin z = z − z3

6
+
z5

5!
−O(z7)

Thus we’ll simply find the power series for 1/ cos z and then multiply the series together. To find
∑
anz

n =

1/ cos z, we know that

1 = cos z
1

cos z
=
(

1− z2

2
+
z4

24
−O(z6)

)(
a0 + a1z + a2z

2 + a3z
3 + a4z

4 +O(z5)
)
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expanding out to fourth order, shows

1 = a0 + a1z +
(
a2 −

a0
2

)
z2 +

(
−a1

2
+ a3

)
z3 +

(a0
24
− a2

2
+ a4

)
z4 +O(z5)

Thus we see that a0 = 1, a1 = 0, a2 = 1/2, a3 = 0, a4 = 5/24, so

1

cos z
= 1 +

z2

2
+

5

24
z4 +O(z5)

Thus

tan z =
(

1 +
z2

2
+

5

24
z4 +O(z5)

)(
z − z3

6
+

z5

120
−O(z7)

)
=z +

z3

3
+

2

15
z5 +O(z7)

2.4 - #21 Suppose that f is an entire function and that there are positive constants A,m with

|f(z)| 6 A|z|m if |z| > R0

Show that f is a polynomial of degree m or less.

Solution By Cauchy’s Integral formula, we know that

f (n)(z) =
n!

2πi

∫
γ

f(ζ)

(ζ − z)n+1
dζ

where γ is a closed curve containing z. For any z ∈ C, define ζ = z +Reiθ with R > R0 + |z|, so we have that

|f (n)(z)| 6 n!

2π

∫
γ

∣∣∣∣ f(ζ)

(ζ − z)n+1

∣∣∣∣ |dζ| 6 An!

2π

∫ 2π

0

|z +Reiθ|m

Rn
dθ 6 Const ·Rm−n

If we take n > m, we see in limit as R→∞ that

f (n)(z) = 0 ∀z ∈ C

Take z0 ∈ C, then since f is entire, we have that

f (k)(z) = f (k)(z0) +

∫ z

z0

f (k+1)(ζ)dζ

for k ∈ N , thus

f(z) = amz
m + . . . a1z + a0, ak ∈ C
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