Tutorial 7
 MAT334 - Complex Variables - Spring 2016
 Christopher J. Adkins

2.3-\# 3 Evaluate

$$
\int_{|z+1|=2} \frac{z^{2}}{4-z^{2}} d z
$$

Solution Note we may rewrite the integrand as

$$
\int_{|z+1|=2} \frac{z^{2}}{4-z^{2}} d z=\int_{|z+1|=2} \underbrace{\frac{z^{2}}{2-z}}_{=f(z)} \frac{d z}{z+2}
$$

and notice that $-2 \in\{z:|z+1|<2\}$. Thus Cauchy's Integral Formula tells us

$$
\int_{|z+1|=2} \frac{z^{2}}{4-z^{2}} d z=2 \pi i f(-2)=2 \pi i
$$

2.3-\# 7 Evaluate

$$
\int_{0}^{2 \pi} \frac{d \theta}{a+b \cos \theta}, \quad a>b>0
$$

Solution Define $\gamma=\{z:|z|=b\}$, then

$$
b \cos \theta=\frac{1}{2}\left(z+\frac{b^{2}}{z}\right)=\frac{z^{2}+b^{2}}{2 z} \quad \text { since } z=b e^{i \theta} \text { on } \gamma
$$

Therefore, by definition of parameterizing a path integral, we have (note $d z=i z d \theta$).

$$
\int_{0}^{2 \pi} \frac{d \theta}{a+b \cos \theta}=\frac{1}{i} \int_{\gamma} \frac{2 d z}{2 a z+z^{2}+b^{2}}
$$

We may factor the polynomial in the bottom via the quadratic formula, we see

$$
z^{2}+2 a z+b^{2}=0 \Longrightarrow z_{ \pm}=-a \pm \sqrt{a^{2}-b^{2}}
$$

Note since $a>b>0$, we have that

$$
-a+\sqrt{a^{2}-b^{2}} \in\{z:|z|<b\}
$$

Thus Cauchy's Integral Formula gives us

$$
\int_{0}^{2 \pi} \frac{d \theta}{a+b \cos \theta}=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}
$$

2.3-\# 12 Evaluate

$$
\int_{\gamma} \sin z d z
$$

where γ is any curve joining i to π.

Solution Note that

$$
\frac{d}{d z}(-\cos z)=\sin z d z
$$

Thus

$$
\int_{\gamma} \sin z d z=-\left.\cos z\right|_{i} ^{\pi}=-\cos \pi+\cos i=1+\cosh (1)
$$

2.3-\# 16 Prove if f is analytic and never zero on a domain D, then $|f(z)|$ has no local minima in D. That is, the graph $(x, y,|f(x+i y)|)$ has no "pits". Use the fact that an analytic function g cannot have a strict local maximum by

$$
|g(z)| \leqslant \max _{\theta \in[0,2 \pi)}\left|g\left(z+r e^{i \theta}\right)\right|
$$

where r is small enough so $z+r e^{i \theta}$ is within the domain of analyticity.

Solution Since f is non-zero on D, consider

$$
g=\frac{1}{f}
$$

Note g is analytic since f is analytic. A local maxima of g corresponds to a local minima of f. Using the fact stated the in question allows us to deduce that g has cannot have strict local maximum, which implies that f cannot have a local minima in D.
2.4-\# 6,8 Find the order of each zero for the given functions

$$
\log (1-z), \quad|z|<1 \quad \& \quad \frac{z}{z^{2}+1}
$$

Solution Using a geometric series, we see

$$
-\log (1-z)=\int \frac{d z}{1-z}=\int \sum_{n \geqslant 0} z^{n} d z=\sum_{n \geqslant 0} \int z^{n} d z=z \sum_{n \geqslant 0} \frac{z^{n}}{n+1}
$$

Thus $\log (1-z)$ has a simple pole at $z=0$ (note the use of Fubini's to exchange the integral and sum). The second function has simple zero at $z=0$, and simple poles at $z= \pm i$.
2.4-\#16 Find the first four terms of the power series expansion around $z_{0}=0$ for $\tan z$

Solution We know that

$$
\tan z=\frac{\sin z}{\cos z} \quad \& \quad \cos z=1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\mathcal{O}\left(z^{6}\right) \quad \& \quad \sin z=z-\frac{z^{3}}{6}+\frac{z^{5}}{5!}-\mathcal{O}\left(z^{7}\right)
$$

Thus we'll simply find the power series for $1 / \cos z$ and then multiply the series together. To find $\sum a_{n} z^{n}=$ $1 / \cos z$, we know that

$$
1=\cos z \frac{1}{\cos z}=\left(1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\mathcal{O}\left(z^{6}\right)\right)\left(a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+\mathcal{O}\left(z^{5}\right)\right)
$$

expanding out to fourth order, shows

$$
1=a_{0}+a_{1} z+\left(a_{2}-\frac{a_{0}}{2}\right) z^{2}+\left(-\frac{a_{1}}{2}+a_{3}\right) z^{3}+\left(\frac{a_{0}}{24}-\frac{a_{2}}{2}+a_{4}\right) z^{4}+\mathcal{O}\left(z^{5}\right)
$$

Thus we see that $a_{0}=1, a_{1}=0, a_{2}=1 / 2, a_{3}=0, a_{4}=5 / 24$, so

$$
\frac{1}{\cos z}=1+\frac{z^{2}}{2}+\frac{5}{24} z^{4}+\mathcal{O}\left(z^{5}\right)
$$

Thus

$$
\begin{aligned}
\tan z & =\left(1+\frac{z^{2}}{2}+\frac{5}{24} z^{4}+\mathcal{O}\left(z^{5}\right)\right)\left(z-\frac{z^{3}}{6}+\frac{z^{5}}{120}-\mathcal{O}\left(z^{7}\right)\right) \\
& =z+\frac{z^{3}}{3}+\frac{2}{15} z^{5}+\mathcal{O}\left(z^{7}\right)
\end{aligned}
$$

2.4-\#21 Suppose that f is an entire function and that there are positive constants A, m with

$$
|f(z)| \leqslant A|z|^{m} \quad \text { if }|z| \geqslant R_{0}
$$

Show that f is a polynomial of degree m or less.

Solution By Cauchy's Integral formula, we know that

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta
$$

where γ is a closed curve containing z. For any $z \in \mathbb{C}$, define $\zeta=z+R e^{i \theta}$ with $R \geqslant R_{0}+|z|$, so we have that

$$
\left|f^{(n)}(z)\right| \leqslant \frac{n!}{2 \pi} \int_{\gamma}\left|\frac{f(\zeta)}{(\zeta-z)^{n+1}}\right||d \zeta| \leqslant \frac{A n!}{2 \pi} \int_{0}^{2 \pi} \frac{\left|z+R e^{i \theta}\right|^{m}}{R^{n}} d \theta \leqslant \text { Const } \cdot R^{m-n}
$$

If we take $n>m$, we see in limit as $R \rightarrow \infty$ that

$$
f^{(n)}(z)=0 \quad \forall z \in \mathbb{C}
$$

Take $z_{0} \in \mathbb{C}$, then since f is entire, we have that

$$
f^{(k)}(z)=f^{(k)}\left(z_{0}\right)+\int_{z_{0}}^{z} f^{(k+1)}(\zeta) d \zeta
$$

for $k \in \mathbb{N}$, thus

$$
f(z)=a_{m} z^{m}+\ldots a_{1} z+a_{0}, \quad a_{k} \in \mathbb{C}
$$

