Tutorial 6

MAT334 - Complex Variables - Spring 2016
 Christopher J. Adkins

Solutions

2.1-\# 21 Let γ be a piecewise smooth simple closed curve, and suppose that F is analytic on some domain containing γ. Show that

$$
\int_{\gamma} F(z) d z=0
$$

Solution By Green's theorem, we find that (letting $F=u+i v$ at the third step)

$$
\int_{\gamma} F(z) d z=\int_{\gamma} F(x, y) d x+i F(x, y) d y=\int_{D}\left[i \frac{\partial F}{\partial x}-\frac{\partial F}{\partial y}\right] d x d y=\int_{D}[\underbrace{i\left(u_{x}-v_{y}\right)-\left(v_{x}+u_{y}\right)}_{=0, \text { by } \mathrm{CR}}] d x d y=0
$$

2.2-\#2,6 Find the radius of convergence of the given power series

$$
\sum_{k=0}^{\infty} \frac{(k!)^{2}}{(2 k)!}(z-2)^{k}, \quad \sum_{k=1}^{\infty} \frac{(2 k)(2 k-2) \ldots 4 \cdot 2}{(2 k-1)(2 k-3) \ldots 3 \cdot 1} z^{k}
$$

Solution By application of the ratio test to both series, we see on the first
$\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty} \frac{((k+1)!)^{2} /(2 k+2)!}{(k!)^{2} /(2 k)!}|z-2|=\lim _{k \rightarrow \infty} \frac{(k+1)^{2}}{(2 k+2)(2 k+1)}|z-2|=\lim _{k \rightarrow \infty} \frac{(1+1 / k)^{2}}{(2+2 / k)(2+1 / k)}|z-2|=\frac{|z-2|}{4}$
Thus we see the first sum needs $|z-2|<4$ to converge. Note for the second we have

$$
a_{k+1}=\frac{(2 k+2)(2 k)(2 k-2) \ldots 4 \cdot 2}{(2 k+1)(2 k-1)(2 k-3) \ldots 3 \cdot 1} z^{k+1}=\frac{2 k+2}{2 k+1} z a_{k}
$$

Thus

$$
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty} \frac{2 k+2}{2 k+1}|z|=|z|
$$

So we see the second sum needs $|z|<1$ to converge.
2.1-\#8,10 Find the power series about the origin for the given function.

$$
z^{2} \cos z, \quad \& \quad \frac{1+z}{1-z} \quad \text { when }|z|<1
$$

Solution We already know the power series of $\cos z$ (by exponential) and $1 /(1-z)$ (by geometric series)

$$
\cos z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!} \quad \& \quad \frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n} \quad \text { when }|z|<1
$$

Thus

$$
z^{2} \cos z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+2}}{(2 n)!} \quad \& \quad \frac{1+z}{1-z}=\sum_{n=0}^{\infty}(1+z) z^{n}=1+2 \sum_{n \geqslant 1} z^{n}
$$

2.1-\#17 Find a closed form (that is, a simple expression) for each of the given power series

$$
\left.\sum_{n=0}^{\infty}(-1)^{n} \frac{(z-2 \pi i)^{n}}{n!}, \quad \& \quad \sum_{n=2}^{\infty} n(n-1) z^{n} \quad \text { (hint:divide by } z^{2}\right)
$$

Solution Recall that

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \Longrightarrow e^{-z}=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{n!} \Longrightarrow e^{-z}=e^{-z+2 \pi i}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(z-2 \pi i)^{n}}{n!}
$$

For the second, we see

$$
\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n} \Longrightarrow \frac{d^{2}}{d z^{2}}\left[\frac{1}{1-z}\right]=\sum_{n=2}^{\infty} n(n-1) z^{n-2}=\frac{1}{z^{2}} \sum_{n=2}^{\infty} n(n-1) z^{n}
$$

Thus

$$
\sum_{n=2}^{\infty} n(n-1) z^{n}=z^{2} \frac{d^{2}}{d z^{2}}\left[\frac{1}{1-z}\right]=\frac{2 z^{2}}{(1-z)^{3}}
$$

Series Products and Quotients Consider

$$
f=\sum_{n=0}^{\infty} a_{n} z^{n} \quad \& \quad g=\sum_{m=0}^{\infty} b_{m} z^{m}
$$

If we ever want to consider the product

$$
f g=\sum_{n=0}^{\infty} a_{n} z^{n} \cdot \sum_{m=0}^{\infty} b_{m} z^{m}
$$

We simply have to gather like terms and obtain another series of the form

$$
\sum_{p=0}^{\infty} c_{p} z^{p}
$$

It's easy to see that we need c_{p} to be the sum of all terms such that $n+m=p$. Thus

$$
c_{p}=\sum_{n+m=p} a_{n} b_{m}=\sum_{n=0}^{p} a_{n} b_{p-n}
$$

If we'd like to divide series, a similar story follows since we know if g is invertible, then

$$
f / g=\frac{\sum_{n=0}^{\infty} a_{n} z^{n}}{\sum_{m=0}^{\infty} b_{m} z^{m}}=\sum_{p=0}^{\infty} c_{p} z^{p}
$$

But this means

$$
\sum_{n=0}^{\infty} a_{n} z^{n}=\sum_{p=0}^{\infty} c_{p} z^{p} \cdot \sum_{m=0}^{\infty} b_{m} z^{m}
$$

Thus

$$
a_{n}=\sum_{p=0}^{n} c_{p} b_{n-p}=b_{0} c_{n}+\sum_{p=0}^{n-1} c_{p} b_{n-p} \Longrightarrow c_{n}=\frac{1}{b_{0}}\left(a_{n}-\sum_{p=0}^{n-1} c_{p} b_{n-p}\right)
$$

This gives us a "nice" formula for computing products and quotients.

