Tutorial 5

MAT334 - Complex Variables - Spring 2016
 Christopher J. Adkins

Solutions

2.1-\# 1a,1c Establish the following differentiation formulas:

$$
(\sin z)^{\prime}=\cos z \quad \& \quad(\sinh z)^{\prime}=\cosh z
$$

Solution Using the complex definition of these functions:

$$
\sin z=\frac{e^{i z}-e^{-i z}}{2 i}, \quad \cos z=\frac{e^{i z}+e^{-i z}}{2}, \quad \sinh z=\frac{e^{z}-e^{-z}}{2}, \quad \cosh z=\frac{e^{z}+e^{-z}}{2}
$$

and chain rule with linearity of the derivative:

$$
\frac{d}{d z} e^{f(z)}=e^{f(z)} \frac{d f}{d z}, \quad \frac{d}{d z}(f(z)+g(z))=\frac{d f}{d z}+\frac{d g}{d z}
$$

the claim follows immediately.
2.1-\#2,4,6 Find the derivative of

$$
z^{2}+10 z, \quad\left[\cos \left(z^{2}\right)\right]^{3}, \quad(\log z)^{3} \quad \text { on } \mathbb{C} \backslash\{x \leqslant 0\}
$$

Solution 2)We've seen that

$$
\frac{d}{d z} z^{n}=n z^{n-1}
$$

Thus

$$
\frac{d}{d z}\left(z^{2}+10 z\right)=2 z+10
$$

4) Using chain rule and the previous question, we see

$$
\frac{d}{d z}\left[\cos \left(z^{2}\right)\right]^{3}=3\left[\cos \left(z^{2}\right)\right]^{2} *\left[\cos \left(z^{2}\right)\right]^{\prime}=3\left[\cos \left(z^{2}\right)\right]^{2} * \sin \left(z^{2}\right) * 2 z=6 z \sin \left(z^{2}\right)\left[\cos \left(z^{2}\right)\right]^{2}
$$

6) We've seen that

$$
\frac{d}{d z} \log z=\frac{1}{z}
$$

Thus

$$
\frac{d}{d z}(\log z)^{3}=3(\log z)^{2}(\log z)^{\prime}=3 \frac{(\log z)^{2}}{z}
$$

2.1-\#15 Let f be analytic on a domain D and suppose that $f^{\prime}(z)=0$ for all $z \in D$. Show that f is constant on D.

Solution Since f is analytic, we know that

$$
f(z)=f\left(z_{0}\right)+\int_{z_{0}}^{z} \underbrace{f^{\prime}(\zeta)}_{=0} d \zeta=f\left(z_{0}\right), \quad \forall z \in D
$$

Thus f is constant on D
2.1-\# 18 Show that $h(z)=\bar{z}$ is not analytic on any domain

Solution We check the Cauchy Riemann Equations: If $f(z)=u(x, y)+i v(x, y)$ and

$$
\partial_{x} u=\partial_{y} v \quad \& \quad \partial_{y} u=-\partial_{x} v
$$

with the partials continuous, then f is analytic. In our case we have $h(z)=\bar{z}=x-i y$, so

$$
u(x, y)=x \quad \& \quad v(x, y)=-y
$$

but

$$
\left(\partial_{x} u=\right) 1 \neq-1\left(=\partial_{y} v\right)
$$

so h is not analytic on any domain.
2.1-\# 20a,20e Let $f=u+i v$ be analytic. In each of the following, find v given u :

$$
u=x^{2}-y^{2}, \quad \& \quad u=\cosh x \cos y
$$

Solution a)We need f to satisfy the Cauchy Riemann Equations. Thus we have

$$
\partial_{x} u=2 x=\partial_{y} v \quad \& \quad \partial_{y} u=-2 y=-\partial_{x} v \Longrightarrow\left\{\begin{array}{l}
2 y=\partial_{x} v \\
2 x=\partial_{y} v
\end{array}\right.
$$

Integrating the equations we've found, we see

$$
v=2 x y+C
$$

Notice that

$$
f=u+i v=z^{2}+C
$$

an equivalent version of the $C R$ equations is that $\partial_{\bar{z}} f(z)=0$. e) We need f to satisfy the Cauchy Riemann Equations. Thus we have

$$
\partial_{x} u=\sinh x \cos y=\partial_{y} v \quad \& \quad \partial_{y} u=-\cosh x \sin y=-\partial_{x} v \Longrightarrow\left\{\begin{array}{l}
\cosh x \sin y=\partial_{x} v \\
\sinh x \cos y=\partial_{y} v
\end{array}\right.
$$

Integrating the equations we've found, we see

$$
v=\sinh x \sin y+C \quad C \in \mathbb{C}
$$

Notice that

$$
f=u+i v=\cosh (z)+C
$$

we see no \bar{z} again, so it's analytic.

