Tutorial 2

MAT334 - Complex Variables - Spring 2016
 Christopher J. Adkins

Solutions

1.3-\# 7 Describe the interior and boundary. State whether the set is open or closed or neither . State if the interior of the set is connected (if it has an interior)

$$
G=\{z=x+i y:|z+1| \geqslant 1, x<0\}
$$

Solution The region looks like the dark blue:

The set is neither open nor closed since points along $x=0$ are excluded from the set, but the points along the circle are. It is path connected.
1.3-\# 10 Describe the set of points z^{2} as z varies over the second quadrant: $\{z=x+i y: x<0, y>0\}$. Show that this is an open, connected set.

Solution In polar coordinates we see

$$
z^{2}=R^{2} e^{i 2 \theta}
$$

Thus we see the 2nd quadrant gets mapped to the lower half plane, $\left\{z: R e^{i \theta}: \theta \in(\pi / 2, \pi)\right\} \rightarrow\left\{z: \operatorname{Re} e^{i \theta}: \theta \in\right.$ $(\pi, 2 \pi)\}$ i.e.

It is path connected since any two points are connected by a line and it is open since for any $z=x+i y$ in the lower half plane we have $B_{y / 2}(z) \subseteq\left\{z: R e^{i \theta}: \theta \in(\pi, 2 \pi)\right\}$
1.3-\# 15 Let $\Omega_{1}=\{z: 1<|z|<2, \Re z>-1 / 2\}$ and $\Omega_{2}=\{z: 1<|z|<2, \Re z<1 / 2\}$. Show that both Ω_{1} and Ω_{2} are domains, but $\Omega_{1} \cap \Omega_{2}$ is not.

Solution It's easy to see that Ω_{1} and Ω_{2} are both annuli with a "bite" out of them.

The intersection is given by

$\Omega_{1} \cap \Omega_{2}$ isn't a domain since it's not connected.
1.3-\# 18 An open set D is star-shaped if there is some point p in D with the property that the line segment from p to z lies in D for each z in D. Show that the disc $\left\{z:\left|z-z_{0}\right|<r\right\}$ is star-shaped. Show that any convex set is star-shaped.

Solution For the disc, take $p=z_{0}$, then clearly $\gamma(t)=t e^{i \theta}+p$ with $t \in[0, r)$ is a line that connects p to every z in the disc. For a convex set, by definition, we know that for any z_{1}, z_{2} in the set we have $\gamma(t)=t z_{1}+(1-t) z_{2}$ is a line contained in the set. Thus fix $z_{1}=p$, and clearly it is star-shaped.
1.4-\#4 Find the limit of the sequence if it converges, if it diverges explain why.

$$
z_{n}=\ln \left(1+\frac{1}{n}\right)
$$

Solution By continuity of $\ln x$ for $x>0$, we have

$$
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)=\ln \left(\lim _{n \rightarrow \infty} 1+\frac{1}{n}\right)=\ln 1=0
$$

1.4-\#13 Find the limit of the function at the given point, or explain why it does not exist.

$$
f(z)=\frac{|z|^{2}}{z}, \quad z \neq 0, \quad \text { at } z_{0}=0
$$

Solution We already know that $|z|^{2}=z \bar{z}$, thus

$$
\lim _{z \rightarrow 0} f(z)=\lim _{z \rightarrow 0} \frac{|z|^{2}}{z}=\lim _{z \rightarrow 0} \bar{z}=\lim _{R \rightarrow 0} R e^{-i \theta}=0
$$

1.4-\#18 Find all the points of continuity of the given function

$$
g(z)=\frac{1}{\left(1-|z|^{2}\right)^{3}}
$$

Solution The only issues will come about when the denominator is zero, thus the bad points are found at

$$
\left(1-|z|^{2}\right)^{3}=0 \Longrightarrow 1=|z|^{2}
$$

i.e. the circle of radius 1 . We conclude the function $g(z)$ is continuous when

$$
\{z:|z|>1\} \quad \text { or } \quad\{z:|z|<1\}
$$

1.4-\#25 Let f and g be continuous at z_{0}. Show that $f+g$ and $f g$ are also continuous at z_{0}. If $g\left(z_{0}\right) \neq 0$, show that $1 / g$ is continuous at z_{0}.

Solution For $(f+g)$, fix ϵ and suppose that when $z \in B_{\delta}\left(z_{0}\right)$, i.e. $\left|z-z_{0}\right|<\delta$ where $\delta>0$ we have $\left|f(z)-f\left(z_{0}\right)\right|<\epsilon$, same for g. Then by the triangle inequality we see

$$
\left|f(z)+g(z)-f\left(z_{0}\right)-g\left(z_{0}\right)\right| \leqslant\left|f(z)-f\left(z_{0}\right)\right|+\left|g(z)-g\left(z_{0}\right)\right|=2 \epsilon
$$

Thus $f+g$ is continuous since this may be done for any ϵ. For $(f g)$, fix $\epsilon>0$, assume the previous continuity assumption. Then

$$
\begin{aligned}
\left|f(z) g(z)-f\left(z_{0}\right) g\left(z_{0}\right)\right| & \leqslant\left|f(z)\left(g\left(z_{0}\right)+\epsilon\right)-f\left(z_{0}\right) g\left(z_{0}\right)\right| \\
& \leqslant\left|f(z)-f\left(z_{0}\right)\right|\left|g\left(z_{0}\right)\right|+\epsilon|f(z)| \\
& \leqslant \epsilon\left(\left|f\left(z_{0}\right)\right|+\left|g\left(z_{0}\right)\right|\right)+\epsilon^{2} \leqslant \tilde{\epsilon}
\end{aligned}
$$

Thus $f g$ is continuous since this may be done for any $\tilde{\epsilon}$. We sketch the inverted function case. Assume $g\left(z_{0}\right) \neq 0$, then we may write

$$
\left|\frac{1}{g(z)}-\frac{1}{g\left(z_{0}\right)}\right|=\left|\frac{g(z)-g\left(z_{0}\right)}{g(z) g\left(z_{0}\right)}\right| \leqslant C(\epsilon)\left|g(z)-g\left(z_{0}\right)\right|
$$

As long as $g(z) \neq 0$ on $B_{\delta}\left(z_{0}\right)$, which is given since g is continuous.
1.4-\#32 Determine whether the given series converges or diverges.

$$
\sum_{n=1}^{\infty} n\left(\frac{1}{2 i}\right)^{n}
$$

Solution By the ratio test, we see that

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{n}\left|\frac{1}{2 i}\right|=\lim _{n \rightarrow \infty} \frac{1}{2}+\frac{1}{2 n}=\frac{1}{2}<1
$$

Thus the test concludes the series converges.

