Tutorial 1

MAT334 - Complex Variables - Spring 2016
 Christopher J. Adkins

Solutions

1.1-\#15 Show that the triangle with vertices at $0, z$, and w is equilateral if and only if

$$
|z|^{2}=|w|^{2}=2 \Re(z \bar{w})
$$

Solution To check if the triangle is equilateral, we only need to check all sides are the same length. Thus we require

$$
|z|^{2}=|w|^{2}=|z-w|^{2}
$$

Expanding out the last term shows

$$
|z-w|^{2}=|z|^{2}+|w|^{2}-2 \Re(z \bar{w})
$$

Therefore, we conclude

$$
|z|^{2}=|z-w|^{2}=|z|^{2}+|w|^{2}-2 \Re(z \bar{w}) \Longrightarrow|w|^{2}=2 \Re(z \bar{w})
$$

which shows the forward direction. The reverse direction is clear by the middle identity.
1.1.1-\#8 Define the complex conjugate, \bar{z}, of $z=(x, y)$ by $\bar{z}=(x,-y)$. Show that $z \bar{z}=\left(|z|^{2}, 0\right)$

Solution We may write

$$
z \bar{z}=(x+i y)(x-i y)=x^{2}-i x y+i x y+y^{2}=x^{2}+y^{2}=|z|^{2}=\left(|z|^{2}, 0\right)
$$

1.1.1-\#10 Let $z=(x, y)$. Show that

$$
|x| \leqslant|z|, \quad|y| \leqslant|z|, \quad|z| \leqslant|x|+|y|
$$

Solution We see that

$$
|z|=|x+i y|=\sqrt{z \bar{z}}=\sqrt{x^{2}+y^{2}} \geqslant \sqrt{x^{2}}=|x|
$$

and by neglecting x we obtain $|z| \leqslant|y|$. The last bound is found by considering

$$
(|x|+|y|)^{2}=x^{2}+y^{2}+2|x||y| \geqslant x^{2}+y^{2}=|z|^{2} \Longrightarrow|x|+|y| \geqslant|z|
$$

1.2-\#7,8 Describe the locus of points z satisfying $\Re\left(z^{2}\right)=4$, then $|z-1|^{2}=|z+1|^{2}+6$.

Solution It's easy to rewrite the restrictions in terms of x and y. We see

$$
\begin{gathered}
\Re\left(z^{2}\right)=4 \Longrightarrow \Re\left(x^{2}-y^{2}+2 i x y\right)=x^{2}-y^{2}=4 \\
|z-1|^{2}=|z+1|^{2}+6 \Longrightarrow(x-1)^{2}+y^{2}=(x+1)^{2}+y^{2}+6 \Longrightarrow-2 x=2 x+6 \Longrightarrow x=-\frac{3}{2}
\end{gathered}
$$

1.2-\#19 Let p be a positive real number and let Γ be the locus of points z satisfying $|z-p|=c x, z=x+i y$. Show that Γ is an ellipse if $c \in(0,1)$, a parabola if $c=1$ and a hyperbola if $c \in(1, \infty)$.

Solution Expanding the restriction reveals

$$
\begin{aligned}
|z-p|=c x \Longrightarrow & \sqrt{(x-p)^{2}+y^{2}}=c x \Longrightarrow x^{2}-2 x p+p^{2}+y^{2}=c^{2} x^{2}, \quad x>0 \\
& \left(1-c^{2}\right) x^{2}-2 x p+y^{2}=0, \quad x>0
\end{aligned}
$$

We know the sign of the quadratic component is what determines the behaviour. Thus

$$
\begin{gathered}
c \in(0,1) \Longrightarrow\left(1-c^{2}\right)>0 \Longrightarrow \frac{\tilde{x}^{2}}{a^{2}}+y^{2}=1 \Longrightarrow \text { ellipse } \\
c=0 \Longrightarrow\left(1-c^{2}\right)=0 \Longrightarrow x=\frac{y^{2}}{2 p} \Longrightarrow \text { parabola } \\
c \in(1, \infty) \Longrightarrow\left(1-c^{2}\right)<0 \Longrightarrow-\frac{\tilde{x}^{2}}{a^{2}}+y^{2}=1 \Longrightarrow \text { hyperbola }
\end{gathered}
$$

where \tilde{x} is the appropriate translation of x.
1.2-\#26 Find all solutions of

$$
z^{3}=8
$$

Solution Let $z=2 e^{i \theta}$, then we see

$$
e^{3 i \theta}=1 \Longrightarrow 3 \theta=2 k \pi, \quad k \in 0,1,2
$$

So the three roots to the equation are given by

$$
z=2,2 e^{i \frac{2}{3} \pi}, 2 e^{i \frac{4}{3} \pi}
$$

1.2-\#29 Let b and c be complex numbers. Show that the roots of the quadratic equation $z^{2}+b z+c=0$ are complex conjugates of each other if and only if the quantity $b^{2}-4 c$ is real and negative, b is real, and c is positive.

Solution By the quadratic formula, we see the roots are given by

$$
z_{ \pm}=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}=\frac{-b \pm \sqrt{\Delta}}{2}
$$

Thus the reverse direction (\Longleftarrow) is obvious. The forward direction (\Longrightarrow) follows If we require the roots to be complex conjugates, we see that this means

$$
z_{+}=\bar{z}_{-}
$$

To check this is the case, we'll first check if $\left|z_{+}\right|^{2}=z_{+} z_{-}>0$.

$$
z_{+} z_{-}=\frac{b^{2}-\left(b^{2}-4 c\right)}{4}=c \Longrightarrow c>0
$$

Next we see that

$$
\begin{aligned}
z_{+}=\bar{z}_{-} \Longrightarrow-\bar{b}+\overline{\sqrt{\Delta}}=-b-\sqrt{\Delta} & \Longrightarrow \overline{\sqrt{\Delta}}+\sqrt{\Delta}=\bar{b}-b \\
& \Longrightarrow \bar{\Delta}+\Delta+2|\sqrt{\Delta}|=\bar{b}^{2}+b^{2}-2|b|^{2} \\
& \Longrightarrow-8 c+2\left|b^{2}-4 c\right|=-2|b|^{2} \\
& \Longrightarrow\left|b^{2}-4 c\right|=-\left(|b|^{2}-4 c\right)
\end{aligned}
$$

Which shows that b is real and $b^{2}-4 c$ is negative (since $|x+y|=|x|+|y|$ only if $x=a y$ with $a \in \mathbb{R}$)

