Tutorial 1

MAT334 – Complex Variables – Spring 2016 Christopher J. Adkins

Solutions

1.1 - #15 Show that the triangle with vertices at 0, z, and w is equilateral if and only if

$$|z|^2 = |w|^2 = 2\Re(z\bar{w})$$

Solution To check if the triangle is equilateral, we only need to check all sides are the same length. Thus we require

$$|z|^2 = |w|^2 = |z - w|^2$$

Expanding out the last term shows

$$|z - w|^2 = |z|^2 + |w|^2 - 2\Re(z\bar{w})$$

Therefore, we conclude

$$|z|^{2} = |z - w|^{2} = |z|^{2} + |w|^{2} - 2\Re(z\bar{w}) \implies |w|^{2} = 2\Re(z\bar{w})$$

which shows the forward direction. The reverse direction is clear by the middle identity.

1.1.1 - #8 Define the complex conjugate, \bar{z} , of z = (x, y) by $\bar{z} = (x, -y)$. Show that $z\bar{z} = (|z|^2, 0)$

Solution We may write

$$z\overline{z} = (x + iy)(x - iy) = x^2 - ixy + ixy + y^2 = x^2 + y^2 = |z|^2 = (|z|^2, 0)$$

1.1.1 - #10 Let z = (x, y). Show that

$$|x| \leq |z|, \quad |y| \leq |z|, \quad |z| \leq |x| + |y|$$

Solution We see that

$$|z| = |x + iy| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2} \ge \sqrt{x^2} = |x|$$

and by neglecting x we obtain $|z| \leq |y|$. The last bound is found by considering

$$(|x| + |y|)^2 = x^2 + y^2 + 2|x||y| \ge x^2 + y^2 = |z|^2 \implies |x| + |y| \ge |z|$$

1.2 - #7,8 Describe the locus of points z satisfying $\Re(z^2) = 4$, then $|z - 1|^2 = |z + 1|^2 + 6$.

Solution It's easy to rewrite the restrictions in terms of x and y. We see

1.2 - #19 Let p be a positive real number and let Γ be the locus of points z satisfying |z-p| = cx, z = x + iy. Show that Γ is an ellipse if $c \in (0, 1)$, a parabola if c = 1 and a hyperbola if $c \in (1, \infty)$.

Solution Expanding the restriction reveals

$$|z - p| = cx \implies \sqrt{(x - p)^2 + y^2} = cx \implies x^2 - 2xp + p^2 + y^2 = c^2 x^2, \quad x > 0$$
$$\implies \boxed{(1 - c^2)x^2 - 2xp + y^2 = 0, \quad x > 0}$$

We know the sign of the quadratic component is what determines the behaviour. Thus

$$c \in (0,1) \implies (1-c^2) > 0 \implies \frac{\tilde{x}^2}{a^2} + y^2 = 1 \implies \text{ellipse}$$
$$c = 0 \implies (1-c^2) = 0 \implies x = \frac{y^2}{2p} \implies \text{parabola}$$
$$c \in (1,\infty) \implies (1-c^2) < 0 \implies -\frac{\tilde{x}^2}{a^2} + y^2 = 1 \implies \text{hyperbola}$$

where \tilde{x} is the appropriate translation of x.

1.2 - #26 Find all solutions of

 $z^{3} = 8$

Solution Let $z = 2e^{i\theta}$, then we see

$$e^{3i\theta} = 1 \implies 3\theta = 2k\pi, \quad k \in 0, 1, 2$$

So the three roots to the equation are given by

$$z = 2, 2e^{i\frac{2}{3}\pi}, 2e^{i\frac{4}{3}\pi}$$

1.2 - #29 Let b and c be complex numbers. Show that the roots of the quadratic equation $z^2 + bz + c = 0$ are complex conjugates of each other if and only if the quantity $b^2 - 4c$ is real and negative, b is real, and c is positive.

Solution By the quadratic formula, we see the roots are given by

$$z_{\pm} = \frac{-b \pm \sqrt{b^2 - 4c}}{2} = \frac{-b \pm \sqrt{\Delta}}{2}$$

Thus the reverse direction (\iff) is obvious. The forward direction (\implies) follows If we require the roots to be complex conjugates, we see that this means

 $z_+ = \bar{z}_-$

To check this is the case, we'll first check if $|z_+|^2 = z_+ z_- > 0$.

$$z_{+}z_{-} = \frac{b^{2} - (b^{2} - 4c)}{4} = c \implies c > 0$$

Next we see that

$$z_{+} = \bar{z}_{-} \implies -\bar{b} + \overline{\sqrt{\Delta}} = -b - \sqrt{\Delta} \implies \overline{\sqrt{\Delta}} + \sqrt{\Delta} = \bar{b} - b$$
$$\implies \overline{\Delta} + \Delta + 2|\sqrt{\Delta}| = \bar{b}^{2} + b^{2} - 2|b|^{2}$$
$$\implies -8c + 2|b^{2} - 4c| = -2|b|^{2}$$
$$\implies |b^{2} - 4c| = -(|b|^{2} - 4c)$$

Which shows that b is real and $b^2 - 4c$ is negative (since |x + y| = |x| + |y| only if x = ay with $a \in \mathbb{R}$)