Tutorial 10

MAT334 — Complex Variables — Spring 2016
Christopher J. Adkins

SOLUTIONS

3.1 - # 5 Determine the number of zeros in the first quadrant.

f(z)=2"+522+3

Solution Recall the argument principal,
1
—Aarg f(z)| = #N —#P
2w ¥

where #N and #P are the number of zeros and poles inside . Now consider the quarter disc of radius R, and

let’s check what happens to the f(z) as it moves around this contour. On the real axis, we see z = x and

=0

Yz

fla)=2"+52>+3>3 whenz >0 = Aarg f(z)

On the arc, we have z = Re®® with 6 € [0,7/2], so

; w0 e 3
f(Re?) = R® (e”+ 7 +Rg>

Thus as R gets large, we the leading term dominating. So we see

Aarg f(Re')

s
=9x%x —
TR 2

On the y axis, we have z = iy and
fliy) =iy’ — 5y° +3
we see that y = R lives in the 2nd quadrant and pulls towards the imaginary axis in the limit, then moves back

to the first quadrant’s real axis as y — 0. So

) 7
Aarg f(iy)| =-5
Yy
Thus the argument principal tells us
1 Aarg f(z)| + Aarg f(Re)| + Aarg f(iy)
#N - #P = —A argf(z)‘ = Y= YR Yy -9
~—~— 2 v 2w

=0

i.e. there are 2 zeros in the 1st quadrant.

3.1 - # 8 Determine the number of zeros in the upper half-plane

f(z) =224 — 2023 4 22 + 2iz — 1
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Solution Consider the contour of a half disc with radius R. On the arc, we see that z = Re? with 6 € [0, 7].
Where the leading order of the f is given by
. . 1 _
f(Re®) = R* (26419 +0 ()) — Aarg f(Re)| =dnx
R R
On the real axis, we see
flz) =22* + 2% — 1 — 2iz(2® — 1)

We see the important points to take note of are the zeros, which happen at x = £1,0 for the imaginary part,
and at @ = (—1 £ 3)/4 for the real part. When = < —1, we see that f > 0 and Sf > 0 ( i.e. we're in the first
quad). Next we see —1 < z < (—1 — 3)/4 has Rf > 0 but I < 0, so we’ve moved into the fourth quadrant. If

we continue checking, we find the curve looks something like

3

-0.25

Thus we see that (noting the pull to the real axis in the limit)

= 27
Ve

Aarg f(z)

so we have that
Aarg f(z)| + Aarg f(Re')

1
4N — 4P = —Aargf(z)‘ - it R
—~~ 27 v 2

=0

3.1 - #14 Determine the number of zeros in the annulus 0 < |z| < 2

1

f(2) = 2" - 5

Solution Consider g(z) = —ze® on v = {z : |z| = 2}, then
1 Rz z
[f(2) +9(2)l = § <2 = |2¢7] = |g(2)]

Thus Rouché’s Theorem tells us that f and g have the same number of zero’s. We see that g(z) only has 1 zero
at z =0, thus f has 1 zero. O
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3.1 - #20 Suppose that f is analytic on a domain containing {z : |z| < 1} and that |f(e?)| < 1, 0 < 6 < 27.
Show that f has exactly one fixed point in the disc |z| < 1, i.e. show f(z) = z has only one solution in the unit

disc.
Solution Consider g(z) = f(2) —z and h(z) =z on {z: |z| = 1}

l9(2) + h(2)

=f() <1=lz] on{z:[z] =1}

Thus Rouché’s Theorem tells us that f(z) — z and z have the same number of zero’s in the unit disc. Since z

only has 1 zero at z = 0, we see there is only one point zg, such that f(z9) = 2o O

3.2 - #3 Find the maximum value of |g(z)],

z

as z varies over the region = {z: |z| > 1}.
Solution By the maximum modulus principal, we know that the max is obtained on the boundary of the
domain, i.e. |z| =1, thus we see

’ Kl Kl 1
= max = ma = max —————
|z|=1 7] 17 — 8 cos(26)

z
422 — 1

2 _
rzneaéc l9(2)" = rzneas)f

(422 —1)(472 — 1) |21 16]2[* —4(z2 +22) + 1 ecp,

Now it’s easy to see that # = 0 or 7 produces the largest modulus, thus

1
max |g(z)| = 3

and it occurs at z = +1.
O

3.2 -# 9 Suppose that f is analytic on a domain D, which contains a simple closed curve v and the inside of

~. If | f] is constant on ~, then either f is constant or f has a zero inside ~.

Solution The maximum modulus principal states that an analytic function must take the maximum on the
boundary of the domain. If f has no zero in the D, apply the maximum principal to 1/f, which is analytic
on the D. The only way for 1/f and f to have a max on entire boundary, is if f(z) = const. If f has a zero,

everything checks out since 1/f isn’t analytic.



