Tutorial 10
 MAT334 - Complex Variables - Spring 2016
 Christopher J. Adkins

Solutions

3.1-\# 5 Determine the number of zeros in the first quadrant.

$$
f(z)=z^{9}+5 z^{2}+3
$$

Solution Recall the argument principal,

$$
\left.\frac{1}{2 \pi} \Delta \arg f(z)\right|_{\gamma}=\# N-\# P
$$

where $\# N$ and $\# P$ are the number of zeros and poles inside γ. Now consider the quarter disc of radius R, and let's check what happens to the $f(z)$ as it moves around this contour. On the real axis, we see $z=x$ and

$$
f(x)=x^{9}+5 x^{2}+3 \geqslant 3 \quad \text { when } x \geqslant\left. 0 \Longrightarrow \Delta \arg f(x)\right|_{\gamma_{x}}=0
$$

On the arc, we have $z=R e^{i \theta}$ with $\theta \in[0, \pi / 2]$, so

$$
f\left(R e^{i \theta}\right)=R^{9}\left(e^{9 i \theta}+\frac{5 e^{2 i \theta}}{R^{7}}+\frac{3}{R^{9}}\right)
$$

Thus as R gets large, we the leading term dominating. So we see

$$
\left.\Delta \arg f\left(R e^{i \theta}\right)\right|_{\gamma_{R}}=9 * \frac{\pi}{2}
$$

On the y axis, we have $z=i y$ and

$$
f(i y)=i y^{9}-5 y^{2}+3
$$

we see that $y=R$ lives in the 2 nd quadrant and pulls towards the imaginary axis in the limit, then moves back to the first quadrant's real axis as $y \rightarrow 0$. So

$$
\left.\Delta \arg f(i y)\right|_{\gamma_{y}}=-\frac{\pi}{2}
$$

Thus the argument principal tells us

$$
\# N-\underbrace{\# P}_{=0}=\left.\frac{1}{2 \pi} \Delta \arg f(z)\right|_{\gamma}=\frac{\left.\Delta \arg f(x)\right|_{\gamma_{x}}+\left.\Delta \arg f\left(R e^{i \theta}\right)\right|_{\gamma_{R}}+\left.\Delta \arg f(i y)\right|_{\gamma_{y}}}{2 \pi}=2
$$

i.e. there are 2 zeros in the 1 st quadrant.
3.1-\#8 Determine the number of zeros in the upper half-plane

$$
f(z)=2 z^{4}-2 i z^{3}+z^{2}+2 i z-1
$$

Solution Consider the contour of a half disc with radius R. On the arc, we see that $z=R e^{i \theta}$ with $\theta \in[0, \pi]$. Where the leading order of the f is given by

$$
f\left(R e^{i \theta}\right)=\left.R^{4}\left(2 e^{4 i \theta}+\mathcal{O}\left(\frac{1}{R}\right)\right) \Longrightarrow \Delta \arg f\left(R e^{i \theta}\right)\right|_{\gamma_{R}}=4 \pi
$$

On the real axis, we see

$$
f(x)=2 x^{4}+x^{2}-1-2 i x\left(x^{2}-1\right)
$$

We see the important points to take note of are the zeros, which happen at $x= \pm 1,0$ for the imaginary part, and at $x=(-1 \pm 3) / 4$ for the real part. When $x<-1$, we see that $\Re f>0$ and $\Im f>0$ (i.e. we're in the first quad). Next we see $-1<x<(-1-3) / 4$ has $\Re f>0$ but $\Im<0$, so we've moved into the fourth quadrant. If we continue checking, we find the curve looks something like

Thus we see that (noting the pull to the real axis in the limit)

$$
\left.\Delta \arg f(x)\right|_{\gamma_{x}}=-2 \pi
$$

so we have that

$$
\# N-\underbrace{\# P}_{=0}=\left.\frac{1}{2 \pi} \Delta \arg f(z)\right|_{\gamma}=\frac{\left.\Delta \arg f(x)\right|_{\gamma_{x}}+\left.\Delta \arg f\left(R e^{i \theta}\right)\right|_{\gamma_{R}}}{2 \pi}=1
$$

3.1-\#14 Determine the number of zeros in the annulus $0<|z|<2$

$$
f(z)=z e^{z}-\frac{1}{4}
$$

Solution Consider $g(z)=-z e^{z}$ on $\gamma=\{z:|z|=2\}$, then

$$
|f(z)+g(z)|=\frac{1}{4}<2 e^{\Re z}=\left|z e^{z}\right|=|g(z)|
$$

Thus Rouché's Theorem tells us that f and g have the same number of zero's. We see that $g(z)$ only has 1 zero at $z=0$, thus f has 1 zero.
3.1-\#20 Suppose that f is analytic on a domain containing $\{z:|z| \leqslant 1\}$ and that $\left|f\left(e^{i \theta}\right)\right|<1,0 \leqslant \theta \leqslant 2 \pi$. Show that f has exactly one fixed point in the disc $|z|<1$, i.e. show $f(z)=z$ has only one solution in the unit disc.

Solution Consider $g(z)=f(z)-z$ and $h(z)=z$ on $\{z:|z|=1\}$

$$
|g(z)+h(z)|=|f(z)|<1=|z| \quad \text { on }\{z:|z|=1\}
$$

Thus Rouché's Theorem tells us that $f(z)-z$ and z have the same number of zero's in the unit disc. Since z only has 1 zero at $z=0$, we see there is only one point z_{0}, such that $f\left(z_{0}\right)=z_{0}$
3.2-\#3 Find the maximum value of $|g(z)|$,

$$
g(z)=\frac{z}{4 z^{2}-1}
$$

as z varies over the region $\Omega=\{z:|z| \geqslant 1\}$.

Solution By the maximum modulus principal, we know that the max is obtained on the boundary of the domain, i.e. $|z|=1$, thus we see
$\max _{z \in \Omega}|g(z)|^{2}=\max _{z \in \Omega}\left|\frac{z}{4 z^{2}-1}\right|^{2}=\max _{|z|=1} \frac{|z|^{2}}{\left(4 z^{2}-1\right)\left(4 \bar{z}^{2}-1\right)}=\max _{|z|=1} \frac{|z|^{2}}{16|z|^{4}-4\left(z^{2}+\bar{z}^{2}\right)+1}=\max _{\theta \in[0,2 \pi]} \frac{1}{17-8 \cos (2 \theta)}$
Now it's easy to see that $\theta=0$ or π produces the largest modulus, thus

$$
\max _{z \in \Omega}|g(z)|=\frac{1}{3}
$$

and it occurs at $z= \pm 1$.
3.2-\# 9 Suppose that f is analytic on a domain D, which contains a simple closed curve γ and the inside of γ. If $|f|$ is constant on γ, then either f is constant or f has a zero inside γ.

Solution The maximum modulus principal states that an analytic function must take the maximum on the boundary of the domain. If f has no zero in the D, apply the maximum principal to $1 / f$, which is analytic on the D. The only way for $1 / f$ and f to have a max on entire boundary, is if $f(z)=$ const. If f has a zero, everything checks out since $1 / f$ isn't analytic.

