Test 3

MAT334 - Complex Variables - Spring 2016
 Christopher J. Adkins

Question 1 Compute

$$
\oint_{|z|=2}\left[\frac{z^{2}}{z-1}\right]^{10} d z
$$

Solution Recall Cauchy's Integral formula; If $f(z)$ is analytic in the interior of γ, where γ is a simple closed curve, then for z in the interior of γ

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{\gamma} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta
$$

In the above question, we see that $1 \in\{z:|z|<2\}=\operatorname{int}(\gamma)$, so

$$
\oint_{|z|=2}\left[\frac{z^{2}}{z-1}\right]^{10} d z=\oint_{|z|=2} \frac{z^{20}}{(z-1)^{10}} d z=\frac{2 \pi i}{9!} f^{(9)}(1)
$$

where $f(z)=z^{20}$ (which is clearly analytic). Computing the derivative shows

$$
\oint_{|z|=2}\left[\frac{z^{2}}{z-1}\right]^{10} d z=2 \pi i \frac{20!}{9!11!}=2 \pi i\binom{20}{9}
$$

Question 2 Let

$$
f(z)=\frac{1}{z^{4}+1}
$$

- Determine the residues of f at the poles which are in the upper half plane, $\{\Im(z)>0\}$.
- Compute the indefinite integral

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{4}+1}
$$

Solution The poles of the function are given by the zeros of the denominator, we see

$$
z^{4}+1=0 \Longrightarrow z^{4}=-1=e^{i \pi+2 \pi n} \Longrightarrow z_{n}=e^{i \pi / 4+\pi n / 2}, \quad n=0,1,2,3
$$

For differences of notation, note

$$
z_{0}=e^{i \pi / 4}=\frac{1+i}{\sqrt{2}} \quad \& \quad z_{1}=e^{i 3 \pi / 4}=\frac{-1+i}{\sqrt{2}} \quad \& \quad z_{2}=e^{i 5 \pi / 4}=\frac{-1-i}{\sqrt{2}} \quad \& \quad z_{3}=e^{i 7 \pi / 4}=\frac{1-i}{\sqrt{2}}
$$

Clearly $n=0,1$ are the poles in the upper half plane. Note that all poles are simple, thus we may apply the formula

$$
\operatorname{Res}\left(\frac{P(z)}{Q(z)} ; z_{0}\right)=\frac{P\left(z_{0}\right)}{Q^{\prime}\left(z_{0}\right)}
$$

We see

$$
\begin{aligned}
\operatorname{Res}\left(f, z_{0}\right) & =\frac{1}{4 z_{0}^{3}}=\frac{z_{0}}{4 z_{0}^{4}}=-\frac{1+i}{4 \sqrt{2}} \\
\operatorname{Res}\left(f, z_{1}\right) & =\frac{1}{4 z_{1}^{3}}=\frac{z_{1}}{4 z_{1}^{4}}=-\frac{-1+i}{4 \sqrt{2}}
\end{aligned}
$$

To compute the integral, choose the contour of a half disk of radius R with base on the x-axis. Then by linearity, we have by the residue theorem that

$$
\int_{\gamma} f(z) d z=\int_{\gamma_{x}} f(z) d z+\int_{\gamma_{a r c}} f(z) d z=2 \pi i \times \sum_{z_{i} \in \operatorname{int}(\gamma)} \operatorname{Res}\left(f(z) ; z_{i}\right)=2 \pi i\left(\operatorname{Res}\left(f, z_{0}\right)+\operatorname{Res}\left(f, z_{1}\right)\right)=\frac{\pi}{\sqrt{2}}
$$

Note that the contribution from $\gamma_{\text {arc }}$ dies in the limit as $R \rightarrow \infty$ since

$$
\left|\int_{\gamma_{\text {arc }}} f(z) d z\right| \leqslant \frac{\text { const }}{R^{3}} \rightarrow 0
$$

Thus

$$
\lim _{R \rightarrow \infty} \int_{\gamma_{x}} f(z) d z=\int_{-\infty}^{\infty} \frac{d x}{x^{4}+1}=\frac{\pi}{\sqrt{2}}
$$

Question 3 Let

$$
f(z)=\frac{1+z}{1-\cos (z)}
$$

- Determine the order of the pole at $z_{0}=2 \pi$
- Determine the first 3 coefficients of the Laurent expansion at $z_{0}=2 \pi$

Solution Noting that $\cos (z)$ is 2π periodic and recalling the series expansion of cosine gives

$$
\cos (z)=\cos (z-2 \pi)=\sum_{n \geqslant 0}(-1)^{n} \frac{(z-2 \pi)^{2 n}}{(2 n)!}=1-\frac{(z-2 \pi)^{2}}{2}+\frac{(z-2 \pi)^{4}}{24}-\mathcal{O}\left((z-2 \pi)^{6}\right)
$$

Thus, locally around $z=2 \pi$ we see

$$
f(z)=\frac{1+z}{1-\cos (z)} \approx 2 \frac{1+2 \pi}{(z-2 \pi)^{2}}
$$

which shows that $f(z)$ has a pole of order 2 at $z_{0}=2 \pi$. Thus, we know the Laurent expansion of $f(z)$ around $z_{0}=2 \pi$ must take the form

$$
f(z)=\sum_{n \geqslant-2} a_{n}\left(z-z_{0}\right)^{n}=\frac{a_{-2}}{(z-2 \pi)^{2}}+\frac{a_{-1}}{z-2 \pi}+a_{0}+\mathcal{O}(z-2 \pi)
$$

Setting both expressions of $f(z)$ equal to one another gives us a recursive method to find the coefficients through series multiplication. Indeed, we see

$$
\frac{1+z}{1-\cos (z)}=\sum_{n \geqslant-2} a_{n}\left(z-z_{0}\right)^{n}
$$

Thus (note the shift in the LHS for ease of matching coefficients in the next step)

$$
\begin{aligned}
1+2 \pi+(z-2 \pi) & =(1-\cos (z)) \sum_{n \geqslant-2} a_{n}\left(z-z_{0}\right)^{n} \\
& =\left(\frac{(z-2 \pi)^{2}}{2}-\frac{(z-2 \pi)^{4}}{24}\right)\left(\frac{a_{-2}}{(z-2 \pi)^{2}}+\frac{a_{-1}}{z-2 \pi}+a_{0}\right)+\mathcal{O}\left((z-2 \pi)^{3}\right) \\
& =\frac{a_{-2}}{2}+\frac{a_{-1}}{2}(z-2 \pi)+\left(\frac{a_{0}}{2}-\frac{a_{-2}}{24}\right)(z-2 \pi)^{2}+\mathcal{O}\left((z-2 \pi)^{3}\right)
\end{aligned}
$$

By comparing the LHS and the RHS, we read off

$$
\left\{\begin{array} { c }
{ \frac { a _ { - 2 } } { 2 } = 1 + 2 \pi } \\
{ \frac { a _ { - 1 } } { 2 } = 1 } \\
{ \frac { a _ { 0 } } { 2 } - \frac { a _ { - 2 } } { 2 4 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
a_{-2}=2(1+2 \pi) \\
a_{-1}=2 \\
a_{0}=\frac{1+2 \pi}{6}
\end{array}\right.\right.
$$

i.e.

$$
\frac{1+z}{1-\cos (z)}=2 \frac{1+2 \pi}{(z-2 \pi)^{2}}+\frac{2}{z-2 \pi}+\frac{1+2 \pi}{6}+\mathcal{O}(z-2 \pi)
$$

Question 4 Compute

$$
\oint_{|z|=1} \frac{\sin ^{2}(z)}{1-\cos (z)} d z
$$

Solution Note that the integrand may be extended to (using the Pythagorean Theorem)

$$
f(z)=\frac{\sin ^{2}(z)}{1-\cos (z)}=\frac{1-\cos ^{2}(z)}{1-\cos (z)}=\frac{(1-\cos (z))(1+\cos (z))}{1-\cos (z)}=1+\cos (z)
$$

which is an entire function. Cauchy's Theorem tells us the integral, over a closed curve, of a function that is analytic in the interior is identically zero. Thus

$$
\oint_{|z|=1} \frac{\sin ^{2}(z)}{1-\cos (z)} d z=0
$$

