Test 2

MAT334 - Complex Variables - Spring 2016
 Christopher J. Adkins

Question 1 Given $f: \mathbb{C} \rightarrow \mathbb{C}$, where $f(z)=(\bar{z}+i)|z|^{2}$.

- Compute $f^{\prime}(0)$, by using the defintion
- Decide whether $f^{\prime}(i)$ exists or it doesn't: if yes, compute it; if no, argue why

Solution By definition, we have that

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

Thus we see that

$$
f^{\prime}(0)=\lim _{z \rightarrow 0} \frac{(\bar{z}+i)(z)(\bar{z})}{z}=\lim _{z \rightarrow 0} i \bar{z}+\bar{z}^{2}=0
$$

The derivative at $f^{\prime}(i)$ doesn't exist since $f(z)$ doesn't satisfy the Cauchy-Riemann Equations, i.e.

$$
\frac{\partial f}{\partial \bar{z}}(i) \neq 0
$$

Question 2 Given the harmonic function

$$
u(x, y)=e^{x}(x \cos (y)-y \sin (y)), \quad(x, y) \in \mathbb{R}^{2}
$$

- Compute which of the following analytic functions has $u(x, y)$ as its real part:

$$
\text { a) } z e^{i\left(z-\frac{\pi}{2}\right)}, \quad \text { b) } i z e^{z-\frac{i \pi}{2}}, \quad \text { c) } i z e^{i z}
$$

- Use the Cauchy-Riemann equations to determine the harmonic conjugate v of u.

Solution Recall that

$$
e^{i z}=\cos (z)+i \sin (z)
$$

by Euler's identity. a) contains e^{-y} in the real component, so we may discard it. c) contains e^{-y} in the real component, so we discard it. For b) we see

$$
i z e^{z-\frac{i \pi}{2}}=-i^{2} z e^{z}=z e^{z}=(x+i y) e^{x} e^{i y}=e^{x}(x \cos y-y \sin y)+i e^{x}(y \cos y+x \sin y)
$$

Thus b) has the real part we want. Using the Cauchy-Riemann equations, we see

$$
\left\{\begin{array} { c }
{ u _ { x } = v _ { y } } \\
{ u _ { y } = - v _ { x } }
\end{array} \Longrightarrow \left\{\begin{array}{c}
v_{y}=e^{x}(x \cos y-y \sin (y))+e^{x} \cos y \\
v_{x}=x e^{x} \sin (y)+e^{x} \sin (y)+e^{x} y \cos (y)
\end{array}\right.\right.
$$

Integrating both equations gives us the imaginary part from the previous part:

$$
\int v_{y} d y=e^{x}(y \cos y+x \sin y)+C \quad \& \quad \int v_{x} d x=e^{x}(y \cos y+x \sin y)+C
$$

Thus $v(x, y)=e^{x}(y \cos y+x \sin y)+C$ as we originally saw.

Question 3 Determine the radius of convergence of the series

$$
\sum_{k=1}^{\infty} \frac{(3 k)!}{(k!)^{3}} z^{2 k}
$$

Solution Note that

$$
a_{k+1}=\frac{(3 k+3)(3 k+2)(3 k+1)}{(k+1)^{3}} a_{k}
$$

Thus the ratio test shows that the series converges if

$$
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1} z^{2(k+1)}}{a_{k} z^{2 k}}\right|=\lim _{k \rightarrow \infty} \frac{(3 k+3)(3 k+2)(3 k+1)}{(k+1)^{3}}|z|^{2}=27|z|^{2}<1 \Longrightarrow|z|<\frac{1}{\sqrt{27}}
$$

thus the radius of convergence is $1 / \sqrt{27}$.

Question 4 The power series expansion abou the origin of an analytic function $f: \mathbb{D} \rightarrow \mathbb{C}$, with $0 \in D$, has the form $f(z)=\sum_{n \geqslant 0} a_{n} z^{n}$.

- Determine $a_{0}, a_{1}, a_{2}, a_{3}$ for $f(z)=e^{z}\left(1+z+z^{2}\right)$.
- Determine $a_{0}, a_{1}, a_{2}, a_{3}$ for

$$
f(z)=\frac{e^{z}}{1+z+z^{2}}
$$

Solution Recall that

$$
\exp (z)=\sum_{n \geqslant 0} \frac{z^{n}}{n!}
$$

Thus the first series is given by

$$
\begin{aligned}
f(z)=e^{z}\left(1+z+z^{2}\right)=\left(1+z+z^{2}\right) \sum_{n \geqslant 0} \frac{z^{n}}{n!} & =\left(1+z+z^{2}\right)+z\left(1+z+z^{2}\right)+\frac{z^{2}\left(1+z+z^{2}\right)}{2}+\frac{z^{3}\left(1+z+z^{2}\right)}{6}+\mathcal{O}\left(z^{4}\right) \\
& =1+2 z+\frac{5}{2} z^{2}+\frac{5}{3} z^{2}+\mathcal{O}\left(z^{4}\right)
\end{aligned}
$$

The second series is found by
$\frac{e^{z}}{1+z+z^{2}}=\sum_{n \geqslant 0} a_{n} z^{n} \Longrightarrow \sum_{n \geqslant 0} \frac{z^{n}}{n!}=\left(1+z+z^{2}\right) \sum_{n \geqslant 0} a_{n} z^{n}=a_{0}+\left(a_{0}+a_{1}\right) z+\left(a_{0}+a_{1}+a_{2}\right) z^{2}+\left(a_{0}+a_{1}+a_{2}+a_{3}\right) z^{3}+\mathcal{O}\left(z^{4}\right)$
Comparing the first 4 terms of both series gives us 4 equations, and 4 unknowns:

$$
\left\{\begin{array} { c }
{ a _ { 0 } = 1 } \\
{ a _ { 0 } + a _ { 1 } = 1 } \\
{ a _ { 0 } + a _ { 1 } + a _ { 2 } = \frac { 1 } { 2 } } \\
{ a _ { 0 } + a _ { 1 } + a _ { 2 } + a _ { 3 } = \frac { 1 } { 6 } }
\end{array} \Longrightarrow \left\{\begin{array}{c}
a_{0}=1 \\
a_{1}=0 \\
a_{2}=-\frac{1}{2} \\
a_{3}=\frac{2}{3}
\end{array} \Longrightarrow f(z)=\frac{e^{z}}{1+z+z^{2}}=1-\frac{z^{2}}{2}+\frac{2 z^{3}}{3}+\mathcal{O}\left(z^{4}\right)\right.\right.
$$

Question 5 Determine the power series expansion about the origin of the function

$$
\frac{1+z}{1+z^{2}}
$$

Solution Note the geometric series is given by

$$
\frac{1}{1-z}=\sum_{n \geqslant 0} z^{n}
$$

Thus

$$
\frac{1}{1+z^{2}}=\frac{1}{1-\left(-z^{2}\right)}=\sum_{n \geqslant 0}\left(-z^{2}\right)^{n}=\sum_{n \geqslant 0}(-1)^{n} z^{2 n}
$$

then multiplying by $1+z$ gives

$$
\frac{1+z}{1+z^{2}}=(1+z) \sum_{n \geqslant 0}(-1)^{n} z^{2 n}=\sum_{n \geqslant 0} a_{n} z^{n}
$$

where

$$
a_{n}=\left\{\begin{array}{cc}
(-1)^{n / 2} & \text { when } n \text { is even } \\
(-1)^{(n-1) / 2} & \text { when } n \text { is odd }
\end{array}\right.
$$

Question 6 Determine the sum of the series

$$
\sum_{n=1}^{\infty} \frac{n}{(2+i)^{n}}
$$

by summing-up an appropriate power series in the variable z and evaluating at an appropriate point.

Solution We know the geometric series is given by $(|z|<|a|)$

$$
\frac{1}{a-z}=\frac{1}{a}\left(\frac{1}{1-z / a}\right)=\frac{1}{a} \sum_{n \geqslant 0}\left(\frac{z}{a}\right)^{n}
$$

and the derivative of the series is given by

$$
\frac{1}{(a-z)^{2}}=\frac{1}{a} \sum_{n \geqslant 1} n \frac{z^{n-1}}{a^{n}}
$$

then multiplying by z and dividing the top and bottom by a^{2}, we see

$$
\frac{\frac{z}{a}}{\left(1-\frac{z}{a}\right)^{2}}=\sum_{n \geqslant 1} n\left(\frac{z}{a}\right)^{n}
$$

Thus if we let

$$
\frac{z}{a}=\frac{1}{2+i}
$$

we see that

$$
\sum_{n=1}^{\infty} \frac{n}{(2+i)^{n}}=\frac{1}{2+i} \frac{1}{(1-1 /(2+i))^{2}}=\frac{2+i}{(1+i)^{2}}=\frac{1}{2}-i
$$

