Test 1

MAT334 - Complex Variables - Spring 2016
 Christopher J. Adkins

Solutions

Question 1 Let D be the open disc centred at i and radius 3. Prove the following statements:

- $|z-w|<6, \quad \forall z, w \in D$
- Show that the exponential function $z \rightarrow e^{z}$ is one-to-one on D

Solution Since $|z-i|<3$ and $|w-i|<3$ if $z, w \in D$, we see by the triangle inequality

$$
|z-w|=|z-i-(-i+w)| \leqslant|z-i|+|w-i|<3+3=6
$$

Assume that $z=x_{1}+i y_{1}$ and $w=x_{2}+i y_{2}$, then we see

$$
e^{z}=e^{w} \Longrightarrow e^{x_{1}} e^{i y_{1}}=e^{x_{2}} e^{i y_{2}} \Longrightarrow e^{x_{1}-x_{2}} e^{i\left(y_{1}-y_{2}\right)}=1 \Longrightarrow\left\{\begin{array}{c}
x_{1}-x_{2}=0 \\
y_{1}-y_{2}=2 \pi k, \quad k \in \mathbb{Z}
\end{array}\right.
$$

Thus we see $x_{1}=x_{2}$ and $y_{1}=y_{2}+2 \pi k$, but since $z, w \in D$, we have

$$
\left|y_{1}-y_{2}\right|=|2 \pi k|<6 \Longrightarrow k=0 \Longrightarrow y_{1}=y_{2} \Longrightarrow z=w
$$

Question 2 Determine all the possible values of $(\sqrt{3}+i)^{i}$, specify which quadrant(s) of the plane contains these values.

Solution By definition of complex exponentiation, we have

$$
(\sqrt{3}+i)^{i}=\exp (i \log (\sqrt{3}+i))=\exp (i(\log (2)+i \arg (\sqrt{3}+i)))=\exp \left(i \log (2)-\frac{\pi}{6}+2 \pi k\right), \quad k \in \mathbb{Z}
$$

Since $\log 2 \in(0, \pi / 2)$. We know the the values lie in the 1 st quadrant of the plane.

Question 3 Compute the sum of the series

$$
\sum_{n=1}^{\infty} \frac{2+i}{(1+i)^{n}}
$$

write the result in the form $a+i b$ where $a, b \in \mathbb{R}$

Solution Notice the series is geometric, so we use

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}
$$

Thus

$$
\sum_{n=1}^{\infty} \frac{2+i}{(1+i)^{n}}=\frac{2+i}{1-1 /(1+i)}-(2+i)=\frac{(2+i)(1+i)}{i}-2-i=3-i-2-i=1-2 i
$$

Question 4 Evaluate the line integral

$$
\int_{\gamma} \sqrt{\bar{z}} d z
$$

where γ is the upper-half of the unit circle, with the counterclockwise orientation. (Here we consider the branch for which $\sqrt{1}=1$).

Solution We parametrize the path using

$$
\gamma(\theta)=e^{i \theta} \quad \theta \in[0, \pi)
$$

so $\gamma^{\prime}(\theta)=i e^{i \theta}$, thus

$$
\int_{\gamma} \sqrt{\bar{z}} d z=\int_{0}^{\pi} \sqrt{e^{-i \theta}} i e^{i \theta} d \theta=i \int_{0}^{\pi} \underbrace{e^{-i \theta / 2+i \theta}}_{\sqrt{1}=1} d \theta=i \int_{0}^{\pi} e^{i \theta / 2} d \theta=2\left[e^{i \theta / 2}\right]_{0}^{\pi}=2(i-1)
$$

