Exam

MAT334 - Complex Variables - Spring 2016
 Christopher J. Adkins

Question 1

(a) Write the number z in standard form (i.e. $a+i b$ where $a, b \in \mathbb{R}$)

$$
z=\frac{(1+i)^{5}}{7-2 i}
$$

(b) Determine the radius of convergence for the series

$$
\sum_{n=1}^{\infty} \frac{n!}{(i n)^{2}} z^{n}
$$

Solution

(a) First note

$$
(1+i)^{5}=\left(\sqrt{2} e^{i \pi / 4}\right)^{4}(1+i)=(\sqrt{2})^{4} e^{i \pi}(1+i)=-4-4 i
$$

Thus

$$
z=\frac{(1+i)^{5}}{7-2 i}=-4 \frac{1+i}{7-2 i}=-4 \frac{1+i}{7-2 i} \frac{7+2 i}{7+2 i}=-4 \frac{5+9 i}{53}=-\frac{20}{53}-i \frac{36}{53}
$$

(b) By the ratio test with

$$
a_{n}=\frac{n!}{(i n)^{n}}
$$

we see

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!} \frac{(i n)^{n}}{(i(n+1))^{n+1}}\right|=\lim _{n \rightarrow \infty} \frac{n^{n}}{(n+1)^{n}}=\lim _{n \rightarrow \infty} \frac{1}{(1+1 / n)^{n}}=\frac{1}{e}
$$

Thus the radius of convergence is $1 / e$.

Question 2 We consider the circle $\gamma=\left\{z=x+i y: x^{2}+y^{2}=9\right\}$ with the positive orientation and its interior D. Define

$$
f: D \rightarrow \mathbb{C}, \quad f(z)=\oint_{\gamma} \frac{w^{2}-w+2}{w-z} d w
$$

Compute $f(1)$ and $f^{\prime}(1)$.

Solution Recall Cauchy's Integral Formula:

$$
f(z)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(w)}{(w-z)} d w
$$

Thus the function f may be written as

$$
f(z)=2 \pi i\left(z^{2}-z+2\right)
$$

Now we easily see that $f(1)=4 \pi i$ and

$$
f^{\prime}(z)=2 z-1 \Longrightarrow f^{\prime}(1)=2 \pi i
$$

Question 3 Determine the radius of convergence for the Taylor series of the analytic function

$$
f(z)=\frac{z-1}{e^{z}-1}
$$

centered at $z_{0}=i$

Solution Notice that $f(z)$ has a simple pole at $z=0$. The Taylor series will not be defined there, thus the distance between the pole and z_{0} will be the radius. i.e.

$$
R=\left|z_{\text {pole }}-z_{0}\right|=|0-i|=1
$$

Question 4 Compute the following integrals
(a)

$$
\oint_{|z-\sqrt{3}-i|=1.5} \frac{\log \left(1+z^{2}\right)}{(z-\sqrt{3})^{2}} d z
$$

(b)

$$
\int_{0}^{2 \pi} \frac{\cos (\theta)}{\cos (2 \theta)+2 i} d \theta
$$

(c)

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{2}} d x
$$

Solution

(a) The first integral is handled by Cauchy's Integral Formula, i.e.

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(w)}{(w-z)^{2}} d w
$$

In this case we see $f(z)=\log \left(1+z^{2}\right)$, so

$$
f^{\prime}(z)=\frac{2 z}{1+z^{2}}
$$

So

$$
\oint_{|z-\sqrt{3}-i|=1.5} \frac{\log \left(1+z^{2}\right)}{(z-\sqrt{3})^{2}} d z=\sqrt{3} \pi i
$$

(b) The second integral may be handled by symmetry, notice that

$$
\cos (2 \theta)=2 \cos ^{2} \theta-1
$$

so the function is odd on the interval from $[0,2 \pi]$, so

$$
\int_{0}^{2 \pi} \frac{\cos (\theta)}{\cos (2 \theta)+2 i} d \theta=0
$$

(c) The last integral we'll conquer with the Residue Theorem. Define the contour of the half disk of radius R with base on the real axis and setting

$$
f(z)=\frac{z^{2}}{\left(z^{2}+1\right)^{2}}
$$

and we'll integrate f around the contour. On the arc γ_{R}, we see that

$$
\left|\int_{\gamma_{R}} f(z) d z\right| \leqslant \frac{\text { const }}{R}
$$

Thus in the limit as $R \rightarrow \infty$ it doesn't contribute. We conclude

$$
\lim _{R \rightarrow \infty} \int_{\gamma} f(z) d z=\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{2}} d x=2 \pi i \times \operatorname{Res}(f, i)
$$

since the function has a pole or order 2 at i. We compute the residue using

$$
\operatorname{Res}(f, i)=\lim _{z \rightarrow i} \frac{d}{d z}(z-i)^{2} f(z)=\lim _{z \rightarrow i} \frac{d}{d z} \frac{z^{2}}{(z+i)^{2}}=\lim _{z \rightarrow i} \frac{2 z}{(z+i)^{2}}-2 \frac{z^{2}}{(z+i)^{3}}=-\frac{i}{2}+\frac{i}{4}=-\frac{i}{4}
$$

Thus

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{2}} d x=\frac{\pi}{2}
$$

Question 5 Determine the maximum value of $|\operatorname{Re}((1+i) z+1)|$ on the unit disc $|z| \leqslant 1$.
Solution Notice we may rewrite the function as

$$
\operatorname{Re}((1+i) z+1)=\operatorname{Re}(x-y+1+i(x+y))=x-y+1
$$

and by the maximum modulus principal, the maximum occurs on the boundary of the domain i.e. $|z|=1$. In this case it's easy to see the max occurs at $(1 / \sqrt{2},-1 / \sqrt{2})$ i.e.

$$
\max _{z \in D}|\operatorname{Re}((1+i) z+1)|=1+\sqrt{2}
$$

Remark: You may also compute the critical points using the substitution $x=\cos \theta$ and $y=\sin \theta$, so we have

$$
f(\theta)=\cos \theta-\sin \theta+1
$$

Then you may solve $f^{\prime}(\theta)=0$ to find the critical points of $\theta=-\pi / 4$ and $3 \pi / 4$ to deduce that $\theta=-\pi / 4$ is a maximum, and $\theta=3 \pi / 4$ is a minimum.

Question 6 Determine the number of zeros of $f(z)=z^{5}-100 z+2$ in the disc $|z|<10$.

Solution By Rouché's Theorem, we see if we set $g(z)=-z^{5}$, we have

$$
|f+g|=|100 z+2| \leqslant 1002<100000=10^{5}=|g|
$$

on the boundary of the disc $(|z|=10)$. Thus f and g have the same number of zeros in the disc. g has a zero of order 5 at the origin, thus f has 5 zeros (counting multiplicities) in the disc.

