Tutorial Problems \#12

MAT 292 - Calculus III - Fall 2014

Solutions

5.7-\# 15 Consider the initial value problem

$$
y^{\prime \prime}+\gamma y^{\prime}+y=k \delta(t-1), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

where $|k|$ is the magnitude of an impulse at $t=1$ and γ is the damping coefficient (or resistance)
(a) Let $\gamma=1 / 2$. Find the value of k for which the response has a peak value of 2 ; call this value k_{1}

Let's solve the ODE to find the peak value in terms of k. Take the Laplace transform to obtain

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime \prime}\right\}+\gamma \mathcal{L}\left\{y^{\prime}\right\}+\mathcal{L}\{y\} & =k \mathcal{L}\{\delta(t-1)\} \Longrightarrow \mathcal{L}\{y\}\left(s^{2}+\gamma s+1\right)=k e^{-s} \\
& \therefore \mathcal{L}\{y\}=\frac{k e^{-s}}{s^{2}+\gamma s+1}
\end{aligned}
$$

If we complete the square we see

$$
\mathcal{L}\{y\}=\frac{k e^{-s}}{\sqrt{1-\gamma^{2} / 4}} \frac{\sqrt{1-\gamma^{2} / 4}}{(s+\gamma / 2)^{2}+1-\gamma^{2} / 4}
$$

Recall that

$$
\mathcal{L}\left\{e^{a t} \sin b t\right\}=\frac{b}{(s-a)^{2}+b^{2}}
$$

Clearly if $\gamma=1 / 2$ we have

$$
a=-\frac{1}{4} \quad \& \quad b=\frac{\sqrt{15}}{4}
$$

Thus we see

$$
y(t)=\frac{4 k}{\sqrt{15}} e^{-(t-1) / 4} \sin \left(\frac{\sqrt{15}}{4}(t-1)\right) H(t-1)
$$

So the response should max out around

$$
y_{\max }=2 \approx \frac{4 k}{\sqrt{15}} e^{-\pi / 8} \Longrightarrow k_{1} \approx \frac{\sqrt{15}}{2} e^{\pi / 8}
$$

(b) Repeat a) for $\gamma=1 / 4$ Following the previous question, we see this implies

$$
a=-\frac{1}{8} \quad \& \quad b=\frac{\sqrt{63}}{8}
$$

Thus...

$$
y_{\max }=2 \approx \frac{8 k}{\sqrt{63}} e^{-\pi / 16} \Longrightarrow k_{1} \approx \frac{\sqrt{63}}{4} e^{\pi / 16}
$$

(c) Determine how k_{1} varies as γ decreases. What is the value of k_{1} when $\gamma=0$?

We see that k_{1} decreases as γ decreases. The value of k_{1} when $\gamma=0$ is just the case when

$$
a=0 \quad \& \quad b=1
$$

Thus

$$
y_{\max }=2=k \Longrightarrow k_{1}=2
$$

5.7-\#25c Solve the IVP using the Laplace Trasnform

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\delta(t-\pi), \quad y(0)=0, y^{\prime}(0)=0
$$

Solution Apply the Laplace Transform to the ODE,

$$
\mathcal{L}\left\{y^{\prime \prime}\right\}+2 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\{\delta(t-\pi)\}
$$

Recall that

$$
\mathcal{L}\{\delta(t-c)\}=e^{-c s} \quad \& \quad \mathcal{L}\left\{y^{\prime}\right\}=s \mathcal{L}\{y\}-y(0)
$$

Therefore the above equation may be rewritten as

$$
\mathcal{L}\{y\}=\frac{e^{-\pi s}}{s^{2}+2 s+2}
$$

By completing the square in the denominator, we see

$$
\mathcal{L}\{y\}=\frac{e^{-\pi s}}{(s+1)^{2}+1}
$$

Recall that

$$
\mathcal{L}\{H(t-c) f(t-c)\}=e^{-c s} \mathcal{L}\{f(t)\} \quad \& \quad \mathcal{L}\left\{e^{a t} \sin b t\right\}=\frac{b}{(s-a)^{2}+b^{2}}
$$

Therefore we see the inverse transform gives

$$
y(t)=e^{-(t-\pi)} \sin (t-\pi) H(t-\pi)
$$

9.5-\# 1 Determine whether separation of variables can be used in the PDE. If so, find the separated ODE's.

$$
x u_{x x}+u_{t}=0
$$

Solution We see the answer is yes here since if $u(x, t)=X(x) T(t)$, we obtain

$$
x X^{\prime \prime} T+X T^{\prime}=0 \Longrightarrow \frac{x X^{\prime \prime}}{X}+\frac{T^{\prime}}{T}=0 \Longrightarrow \underbrace{\frac{x X^{\prime \prime}}{X}}_{f(x)}=-\underbrace{\frac{T^{\prime}}{T}}_{g(t)}
$$

since both functions (f and g) do not depend on each other, they must be constant. Call the constant $\lambda \in \mathbb{R}$, thus

$$
x X^{\prime \prime}=\lambda X \quad \& \quad T^{\prime}=-\lambda T
$$

are the ODE's we seek.
9.5-\# 3 Determine whether separation of variables can be used in the PDE. If so, find the separated ODE's.

$$
u_{x x}+u_{x t}+u_{t}=0
$$

Solution We again see the answer is yes here. If we try $u(x, t)=X(x) T(t)$, we'll obtain

$$
\frac{X^{\prime \prime}}{X}+\frac{X^{\prime} T^{\prime}}{X T}+\frac{T^{\prime}}{T}==\frac{X^{\prime \prime}}{X}+\frac{T^{\prime}}{T}\left(\frac{X^{\prime}}{X}+1\right)=0 \Longrightarrow \frac{X^{\prime \prime}}{X^{\prime}+X}=-\frac{T^{\prime}}{T}
$$

thus we see the above both equal some constant $\lambda \in \mathbb{R}$, hence

$$
X^{\prime \prime}=\lambda\left(X^{\prime}+X\right) \quad \& \quad T^{\prime}=-\lambda T
$$

are the ODE's we seek.
9.5-\# 5 Determine whether separation of variables can be used in the PDE. If so, find the separated ODE's.

$$
u_{x x}+(x+y) u_{y y}=0
$$

Solution We won't be able to decouple the system due to the mixed variables. If we try $u(x, y)=X(x) Y(y)$, we see

$$
\frac{X^{\prime \prime}}{X}+(x+y) \frac{Y^{\prime \prime}}{Y}=0
$$

which can not be decoupled.

