Tutorial Problems \#11

MAT 292 - Calculus III - Fall 2015

Solutions

5.4-\#7 Solve using the Laplace Transform,

$$
y^{\prime \prime}+\omega^{2} y=\cos 2 t, \quad y(0)=1, y^{\prime}(0)=0, \quad \omega^{2} \neq 4
$$

Solution Apply the Laplace transform to the ODE,

$$
\mathcal{L}\left\{y^{\prime \prime}\right\}+\omega^{2} \mathcal{L}\{y\}=\mathcal{L}\{\cos 2 t\}
$$

Recall

$$
\mathcal{L}\left\{y^{\prime \prime}\right\}=s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0) \quad \& \quad \mathcal{L}\{\cos b t\}=\frac{s}{s^{2}+b^{2}}
$$

Thus we may rewrite the above equation as

$$
\mathcal{L}\{y\}=\frac{s}{s^{2}+\omega^{2}}+\frac{s}{\left(s^{2}+\omega^{2}\right)\left(s^{2}+4\right)}
$$

If we perform a partial fraction decomposition on the second term, we see

$$
\mathcal{L}\{y\}=\frac{s}{s^{2}+\omega^{2}}+\frac{1}{\omega^{2}-4}\left(\frac{s}{s^{2}+4}-\frac{s}{s^{2}+\omega^{2}}\right)
$$

It's easy to apply \mathcal{L}^{-1} since we know exactly what function corresponds to every term, thus

$$
y=\cos \omega t+\frac{1}{\omega^{2}-4}(\cos 2 t-\cos \omega t)
$$

5.5-\# 8 Find $\mathcal{L}\{f\}$ for

$$
f(t)=\left\{\begin{array}{cc}
0 & t<1 \\
t^{2}-2 t+2 & t \geqslant 1
\end{array}\right.
$$

Solution Notice that if we define $g(x)=x^{2}+1$, we see that

$$
g(t-1)=(t-1)^{2}+1=t^{2}-2 t+2
$$

Thus we may rewrite f as

$$
f(t)=g(t-1) H(t-1)
$$

Recall that

$$
\mathcal{L}\{g(t-c) H(t-c)\}=e^{-c s} \mathcal{L}\{g(t)\} \quad \& \quad \mathcal{L}\left\{t^{2}\right\}=\frac{2}{s^{3}} \quad \& \quad \mathcal{L}\{1\}=\frac{1}{s}
$$

Thus

$$
\mathcal{L}\{g(t-1) H(t-1)\}=e^{-s} \mathcal{L}\{g(t)\}=e^{-s}\left(\mathcal{L}\left\{t^{2}\right\}+\mathcal{L}\{1\}\right)=e^{-s}\left(\frac{2}{s^{3}}+\frac{1}{s}\right)
$$

Lemma If $f(t)=f(t+T)$ and is piecewise continuous on $[0, T]$, then

$$
\mathcal{L}\{f\}=\frac{\int_{0}^{T} e^{-s t} f(t) d t}{1-e^{-s T}}
$$

Proof Without the loss of generality assume $f=0$ when $t<0$. The first period of the function f may be isolated as

$$
f_{T}(t)=f(t)(1-H(t-T))=\left\{\begin{array}{cc}
f & 0 \leqslant t \leqslant T \\
0 & \text { else }
\end{array}\right.
$$

The k th period of the function f may be isolated as $f_{T}(t-k T) H(t-k T)$. Now consider the Laplace transform of the first n periods,

$$
\begin{aligned}
\mathcal{L}\left\{f_{n T}\right\} & =\int_{0}^{n T} e^{-s t} f(t) d t \\
& =\sum_{k=0}^{n-1} \mathcal{L}\left\{f_{T}(t-k T) H(t-k T)\right\} \\
& =\sum_{k=0}^{n-1} e^{-k T s} \mathcal{L}\left\{f_{T}(t)\right\} \\
& =\mathcal{L}\left\{f_{T}(t)\right\} \sum_{k=0}^{n-1}\left(e^{-s T}\right)^{k} \\
& =\mathcal{L}\left\{f_{T}(t)\right\} \frac{1-e^{-s(n-1) T}}{1-e^{-s T}}
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ recovers f, and we see

$$
\mathcal{L}\{f(t)\}=\lim _{n \rightarrow \infty} \mathcal{L}\left\{f_{n T}\right\}=\lim _{n \rightarrow \infty} \mathcal{L}\left\{f_{T}(t)\right\} \frac{1-e^{-s(n-1) T}}{1-e^{-s T}}=\frac{\mathcal{L}\left\{f_{T}(t)\right\}}{1-e^{-s T}}
$$

5.5-\# 22 Find $\mathcal{L}\{f\}$ where

$$
f(t)=\left\{\begin{array}{cc}
1 & 0 \leqslant t<1 \\
-1 & 1 \leqslant t<2
\end{array} \quad f(t+2)=f(t)\right.
$$

Solution Use the previous formula:

$$
\mathcal{L}\{f\}=\frac{\int_{0}^{T} e^{-s t} f(t) d t}{1-e^{-s T}}
$$

We see $T=2$, and

$$
\mathcal{L}\{f\}=\frac{\int_{0}^{2} e^{-s t} f(t) d t}{1-e^{-2 s}}=\frac{\int_{0}^{1} e^{-s t} d t-\int_{1}^{2} e^{-s t} d t}{1-e^{-2 s}}=\frac{e^{-2 s}-2 e^{-s}+1}{1-e^{-2 s}}
$$

5.6-\#21 Solve using the Laplace Transform,

$$
y^{\prime \prime}+y=g=1+\sum_{k=1}^{n}(-1)^{k} H(t-k \pi), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Solution Apply the Laplace Transform on the ODE, we obtain by linearity

$$
\mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L}\{y\}=\mathcal{L}\{1\}+\sum_{k=1}^{n}(-1)^{k} \mathcal{L}\{H(t-k \pi)\}
$$

Using our previous table, we see

$$
\mathcal{L}\{y\}=\frac{1}{s\left(s^{2}+1\right)}+\sum_{k=1}^{n}(-1)^{k} \frac{e^{-k \pi s}}{s\left(s^{2}+1\right)}
$$

A partial fractions decomposition gives

$$
\mathcal{L}\{y\}=\frac{1}{s}-\frac{s}{s^{2}+1}+\sum_{k=1}^{n}(-1)^{k} e^{-k \pi s}\left(\frac{1}{s}-\frac{s}{s^{2}+1}\right)
$$

Using the table again, we see the solution is given by

$$
y=1-\cos t+\sum_{k=1}^{n}(-1)^{k}(1-\cos (t-k \pi)) H(t-k \pi)
$$

