Tutorial Problems \#10

MAT 292 - Calculus III - Fall 2015

Solutions

5.1-\# 15 Find the Laplace Transform of

$$
f(t)=\left\{\begin{array}{cc}
0, & 0 \leqslant t \leqslant 1 \\
1, & 1<t \leqslant 2 \\
0, & 2<t
\end{array}\right.
$$

Solution By direct computation we have

$$
\mathcal{L}\{f(t)\}=\int_{1}^{2} e^{-s t} d t=\left.\frac{-1}{s} e^{-s t}\right|_{1} ^{2}=\frac{e^{-s}-e^{-2 s}}{s}
$$

5.1-\# 35 Prove Corollary[5.1.7]: If $f(t)$ is piecewise continuous on [0, A] for any positive A, and f is of exponential order, that is, there exists real constants $M \geqslant 0, K>0$, and a such that $|f(t)| \leqslant K e^{a t}$ when $t \geqslant M$. Then

$$
|F(s)| \leqslant \frac{L}{s}
$$

for some constant L as $s \rightarrow \infty$. i.e.

$$
\lim _{s \rightarrow \infty} F(s)=0
$$

Proof We know that $F(s)$ exists for $s>a$ via theorem 5.1.6. So let's take $M \geqslant 0$, and split the integral in the definition of the Laplace transform,

$$
|F(s)|=\left|\int_{0}^{\infty} f(t) e^{-s t} d t\right|=\left|\int_{0}^{M} f(t) e^{-s t} d t+\int_{M}^{\infty} f(t) e^{-s t} d t\right| \leqslant \int_{0}^{M}|f(t)| e^{-s t} d t+\int_{M}^{\infty}|f(t)| e^{-s t} d t
$$

Since $f(t)$ is bounded on $[0, M]$, and of exponential order, we have the following bound

$$
|F(s)| \leqslant \max _{t \in[0, M]}|f(t)| \int_{0}^{M} e^{-s t} d t+K \int_{M}^{\infty} e^{a t} e^{-s t} d t=\max _{t \in[0, M]}|f(t)| \frac{1-e^{-s M}}{s}+\frac{K}{s-a} e^{-(s-a) M}
$$

Now we note that

$$
1-e^{-s M} \leqslant 1 \quad \& \quad \frac{K}{s-a} e^{-(s-a) M}=\frac{1}{s}\left(\frac{K}{1-a / s} e^{-(s-a) M}\right) \leqslant \frac{K_{1}}{s}
$$

since $a / s<1$. Thus

$$
|F(s)| \leqslant \frac{\max _{t \in[0, M]}|f(t)|+K_{1}}{s}=\frac{L}{s}
$$

5.2- \# 11 Let $F(s)=\mathcal{L}\{f(t)\}$, where $f(t)$ is piecewise continuous and of exponential order on $[0, \infty)$. Show that

$$
\mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{1}{s} F(s)
$$

Solution Recall that we have

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)
$$

via integration by parts since $f(t)$ is piecewise continuous and of exponential order. Define

$$
g(t)=\int_{0}^{t} f(\tau) d \tau \Longrightarrow g^{\prime}(t)=f(t)
$$

Hence, by plugging this into the above formula we have

$$
\mathcal{L}\{f(t)\}=s \mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\} \Longrightarrow \mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{F(s)}{s}
$$

5.2-\#26 A tank originally contains 100 gal of fresh water. Then water containing $1 / 2 \mathrm{lb}$ of salt per gal is poured into the tank at a rate of $2 \mathrm{gal} / \mathrm{min}$, and the mixture is allowed to leave at the same rate. After 10 min the salt water solution flowing into the tank suddenly switches to fresh water flowing in at a rate of $2 \mathrm{gal} / \mathrm{min}$, while the solution continues to leave the tank at the same rate. Find the Laplace transform of the amount of salt $y(t)$ in the tank.

Solution We see the amount of salt in the tank is begin at $t=0 \mathrm{~min}$, so $y(0)=0$. We see the change in salt is given by

$$
y^{\prime}=\left\{\begin{array}{cc}
\frac{1}{2} * 2-2 y & t \in[0,10] \\
-2 y & t>10
\end{array}\right.
$$

since volume is constant. We see that y is given by

$$
y(t)=\left\{\begin{array}{cc}
\frac{1-e^{-2 t}}{2} & t \in[0,10] \\
\frac{e^{20}-1}{2} e^{-2 t} & t>10
\end{array}\right.
$$

Now we compute the Laplace Transform

$$
\begin{aligned}
\mathcal{L}\{y\} & =\int_{0}^{10} e^{-s t} \frac{1-e^{-2 t}}{2} d t+\int_{10}^{\infty} \frac{e^{20}-1}{2} e^{-2 t} e^{-s t} d t \\
& =\frac{1-e^{-10 s}}{2 s}+\frac{e^{-10(s+2)}-1}{2(s+2)}+\left(e^{20}-1\right) \frac{e^{-10(s+2)}}{2(s+2)} \\
& =\frac{1-e^{-10 s}}{2 s}-\frac{1-e^{-10 s}}{2(s+2)} \\
& =\frac{1-e^{-10 t}}{s(s+2)}
\end{aligned}
$$

Note you could have perform the Laplace transform directly on the ODE to obtain

$$
\mathcal{L}\left\{y^{\prime}\right\}=\int_{0}^{10} e^{-s t} d t-2 \mathcal{L}\{y\} \Longrightarrow \mathcal{L}\{y\}(s+2)=\frac{1-e^{-10 t}}{s} \Longrightarrow \mathcal{L}\{y\}=\frac{1-e^{-10 t}}{s(s+2)}
$$

5.3-\#27 A damped oscillator with mass m, damping constant γ, and spring constant k, is subjected to an external force $F(t)=F_{0} t$ over the time interval $0 \leqslant t \leqslant T$. The external force is then removed at time T. Find the Laplace transform of the displacement $y(t)$ of the mass, assuming that the oscillator is initially in the equilibrium state.

Solution We see the system is given by Hook's Law with damping, i.e.

$$
m y^{\prime \prime}=\left\{\begin{array}{cc}
-k y-\gamma y^{\prime}+F_{0} t & t \in[0, T] \\
-k y-\gamma y^{\prime} & t>T
\end{array}\right.
$$

The initial data is $y(0)=0, y^{\prime}(0)=0$ since the system is in equilibrium. Let's apply the Laplace transform directly this time, we see

$$
\begin{aligned}
m \mathcal{L}\left\{y^{\prime \prime}\right\} & =-k \mathcal{L}\{y\}-\gamma \mathcal{L}\left\{y^{\prime}\right\}+F_{0} \int_{0}^{T} t e^{-s t} \\
\Longrightarrow m s^{2} \mathcal{L}\{y\} & =-k \mathcal{L}\{y\}-\gamma s \mathcal{L}\{y\}+F_{0} \frac{1-e^{-s T}(s T+1)}{s^{2}} \\
\Longrightarrow \mathcal{L}\{y\} & =F_{0} \frac{1-e^{-s T}(s T+1)}{s^{2}\left(m s^{2}+\gamma s+k\right)}
\end{aligned}
$$

To find the solution y from this, we'll use injectivity and linearity of the Laplace transform. Performing a partial fraction decomposition, we see

$$
\begin{aligned}
\frac{1}{s^{2}\left(m s^{2}+\gamma s+k\right)} & =\frac{\gamma^{2}+\gamma m s-k m}{k^{2}\left(m s^{2}+\gamma s+k\right)}-\frac{\gamma}{k^{2} s}+\frac{1}{k s^{2}} \\
& =\frac{1}{k^{2}}\left[\frac{\gamma(s+\gamma / 2 m)}{(s+\gamma / 2 m)^{2}-\gamma^{2} / 4 m+k / m}+\frac{\gamma / 2 m^{2}-k}{(s+\gamma / 2 m)^{2}-\gamma^{2} / 4 m^{2}+k / m}-\frac{\gamma}{s}+\frac{k}{s^{2}}\right]
\end{aligned}
$$

To simplify the above, let's introduce some notation. Let $\eta=-\gamma / 2 m$, and $\xi=\sqrt{k / m-\gamma^{2} / 4 m}$. Then we see the Laplace Transform may be written as

$$
\begin{aligned}
\mathcal{L}\{y\}=\frac{F_{0}}{k^{2}}\left[\frac{\gamma(s-\eta)}{(s-\eta)^{2}+\xi^{2}}\right. & \left.+\frac{\gamma / 2 m^{2}-k}{\xi} \frac{\xi}{(s-\eta)^{2}+\xi^{2}}-\frac{\gamma}{s}+\frac{k}{s^{2}}\right]- \\
& -\frac{F_{0}}{k^{2}} e^{-s T}(s T+1)\left[\frac{\gamma(s-\eta)}{(s-\eta)^{2}+\xi^{2}}+\frac{\gamma / 2 m^{2}-k}{\xi} \frac{\xi}{(s-\eta)^{2}+\xi^{2}}-\frac{\gamma}{s}+\frac{k}{s^{2}}\right]
\end{aligned}
$$

As we can see, injectivity implies the solution y contains the Heaviside function, $e^{\eta t} \cos (\xi t)$, $e^{\eta t} \sin (\xi t)$, constant terms, and linear terms. It is very messy to continue in full generalities, so we leave it to the reader to push through and match the terms.

