Tutorial Problems \#9

MAT 292 - Calculus III - Fall 2015

Solutions

Section 4.5, \# 12) Solve

$$
y^{\prime \prime}-y^{\prime}-2 y=\cosh (2 t)
$$

Before we can solve the non-homogeneous problem we need to know the general solution of the corresponding homogeneous problem. In this case, we solve

$$
w^{\prime \prime}-w^{\prime}-2 w=0
$$

Looking for solutions in the form $w=e^{\lambda t}$ we find the characteristic equation for the homogeneous problem:

$$
\lambda^{2}-\lambda-2=0(\lambda-2)(\lambda+1) \quad=0
$$

Therefore $w=c_{1} e^{2 t}+c_{2} e^{-t}$ is the general solution to the homogeneous problem. We now write

$$
\cosh (2 t)=\frac{1}{2}\left(e^{2 t}+e^{-2 t}\right)
$$

to see that the inhomogeneity falls into the framework of the much simpler method of undetermined coefficients. Here, to find a particular solution to the equation

$$
Y_{1}^{\prime \prime}-Y_{1}^{\prime}-2 Y_{1}=\frac{1}{2} e^{-2 t}
$$

we can simply guess $Y_{1}=A e^{-2 t}$ and solve for the coefficient A. Since $Y_{1}^{\prime}=-2 A e^{-2 t}$ and $Y_{1}^{\prime \prime}=4 a e^{-2 t}$, we use the equation to find that

$$
\begin{aligned}
(4 A+2 A-2 A) e^{-2 t} & =\frac{1}{2} e^{-2 t} \\
4 A & =\frac{1}{2} \\
A & =\frac{1}{8} .
\end{aligned}
$$

Things are a little bit more subtle for the other term in the inhomogeneity. To find a particular solution to

$$
Y_{2}^{\prime \prime}-Y_{2}^{\prime}-2 Y_{2}=\frac{1}{2} e^{2 t}
$$

we cannot make the guess $Y_{2}=A e^{2 t}$. This is because the function $e^{2 t}$ is a solution of the homogeneous problem and so any choice of A will give zero on the rhs. Instead we make the guess $Y_{2}=B t e^{2 t}$ (these are the types of
solutions we saw with repeating eigenvalues for example). Computing

$$
\begin{aligned}
Y_{2}^{\prime} & =(B+2 B t) e^{2 t} \\
Y_{2}^{\prime \prime} & =(4 B+4 B t) e^{2 t}
\end{aligned}
$$

we use the equation to solve for B to get

$$
\begin{aligned}
Y_{2}^{\prime \prime}-Y_{2}^{\prime}-2 Y_{2} & =(4 B+4 B t-B-2 B t-2 B t) e^{2 t} \\
& =3 B e^{2 t}=\frac{1}{2} e^{2 t}
\end{aligned}
$$

Therefore $Y_{2}=\frac{1}{6} t e^{2 t}$ is a particular solution to this equation. Using the linearity of the equation, we have a particular solution to the original problem:

$$
\begin{aligned}
Y & =Y_{1}+Y_{2} \\
& =\frac{1}{8} e^{-2 t}+\frac{1}{6} e^{2 t}
\end{aligned}
$$

Finally the general solution to the inhomogeneous differential equation can be found by adding the general solution of the homogeneous one:

$$
y=c_{1} e^{2 t}+c_{2} e^{-t}+\frac{1}{8} e^{-2 t}+\frac{1}{6} t e^{2 t}
$$

where the constants c_{1} and c_{2} are fixed by initial conditions.

Section 4.5, \# 33 Find the general solution of

$$
y^{\prime \prime}+y= \begin{cases}t, & 0 \leqslant t \leqslant \pi \\ \pi e^{\pi-t}, & t>\pi\end{cases}
$$

As always we first find the general solution to the homogeneous problem:

$$
w^{\prime \prime}+w=0 \Longrightarrow w=c_{1} \sin t+c_{2} \cos t
$$

Since the inhomogeneity is a piecewise defined function, the right approach to take is to solve the problem separately on the two subdomains $t \in[0, \pi]$ and $t>\pi$ and then ensure that the solution is continuous and differentiable at the point $t=\pi$.

Region 1: $0 \leqslant t \leqslant \pi$:
In this region we find the general solution $y_{<}$to the problem

$$
y_{<}^{\prime \prime}+y<=t
$$

We guess a particular solution in the form $Y_{<}=A t+B$ and use the equation to trivially find $A=1$ and $B=0$. Therefore the general solution in this region is given by

$$
y<=c_{1}^{<} \sin t+c_{2}^{<} \cos t+t
$$

Region 2: $t>\pi$

In this region, we find the general solution $y_{>}$to the problem

$$
y_{>}^{\prime \prime}+y_{>}=\pi e^{\pi-t}
$$

We guess a particular solution in the form $Y_{>}=A e^{-t}$. Then $Y_{>}^{\prime \prime}=A e^{-t}$ and we have that

$$
\begin{gathered}
Y_{>}^{\prime \prime}+Y_{>}=(2 A) e^{-t}=\pi e^{\pi-t} \\
A=\frac{1}{2} \pi e^{\pi} .
\end{gathered}
$$

Therefore the general solution in this region is given by

$$
y_{>}=c_{1}^{>} \sin t+c_{2}^{>} \cos t+\frac{1}{2} \pi e^{\pi-t}
$$

Patching $y_{<}$and $y_{>}$
We have found the general solution is

$$
y(t)= \begin{cases}c_{1}^{<} \sin t+c_{2}^{<} \cos t+t, & 0 \leqslant t \leqslant \pi \\ c_{2}^{>} \sin t+c_{2}^{>} \cos t+\frac{1}{2} \pi e^{t-\pi}, & t>\pi\end{cases}
$$

with 4 undetermined constants. We need to ensure that at $t=\pi$, the solution is both continuous and differentiable. Evaluating at $t=\pi$:

$$
\begin{aligned}
& y_{<}(\pi)=-c_{2}^{<}+\pi \\
& y_{>}(\pi)=-c_{2}^{>}+\frac{1}{2} \pi
\end{aligned}
$$

implies that we must set $c_{2}^{>}=c_{2}^{<}-\frac{\pi}{2}$.
Similarly, evaluating the derivatives at $t=\pi$:

$$
\begin{aligned}
& y_{<}^{\prime}(\pi)=-c_{1}^{<}+1 \\
& y_{>}^{\prime}(\pi)--c_{1}^{>}-\frac{1}{2} \pi
\end{aligned}
$$

$\operatorname{implies} c_{1}^{>}=c_{1}^{<}-1-\frac{1}{2} \pi$. Therefore the general solution to the original equation is given by

$$
y(t)= \begin{cases}c_{1} \sin t+c_{2} \cos t+t, & 0 \leqslant t \leqslant \pi \\ \left(c_{1}-\left(1+\frac{\pi}{2}\right)\right) \sin t+\left(c_{2}-\frac{\pi}{2}\right) \cos t+\frac{1}{2} \pi e^{\pi-t}, & t>\pi\end{cases}
$$

Section 4.7, \# 39 This problem is an alternative to the horrible derivation of the variation of parameters formula. Suppose you want to solve

$$
y^{\prime \prime}+p y^{\prime}+q y=F
$$

and you know that the corresponding homogeneous problem

$$
w^{\prime \prime}+p w^{\prime}+q w=0
$$

has the general solution $w(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$. We make a change of variables to reduce the non-homogeneous second order equation to a first order equation that we can solve easily. To this end, set

$$
y(t)=v(t) y_{1}(t)
$$

and find the equation satisfied by $v(t)$. We compute

$$
\begin{aligned}
y & =v y_{1} \\
y^{\prime} & =v^{\prime} y_{1}+v y_{1}^{\prime} \\
y^{\prime \prime} & =v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}
\end{aligned}
$$

Plugging these into the equation we have

$$
v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+\underbrace{v y_{1}^{\prime \prime}}+p(v^{\prime} y_{1}+\underbrace{v y_{1}^{\prime}})+\underbrace{q v y_{1}}=F
$$

Note that the underlined terms add up to zero:

$$
\begin{aligned}
v y_{1}^{\prime \prime}+p v y_{1}^{\prime}+q v y_{1} & =v\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right) \\
& =0
\end{aligned}
$$

because y_{1} is a solution to the homogeneous problem. We use the method of integrating factors to solve the resulting first order equation for v^{\prime}. That is, after removing the underlined terms, we have

$$
\begin{aligned}
v^{\prime \prime} y_{1}+v^{\prime}\left(2 y_{1}^{\prime}+p y_{1}\right) & =F \\
v^{\prime \prime}+v^{\prime}\left(2 \frac{y_{1}^{\prime}}{y_{1}}+p\right) & =\frac{F}{y_{1}} \\
\left(e^{\int\left(2 \frac{y_{1}^{\prime}}{y_{1}}+p\right)} v^{\prime}\right)^{\prime} & =e^{\int\left(2 \frac{y_{1}^{\prime}}{y_{1}}+p\right)} \frac{F}{y_{1}} .
\end{aligned}
$$

This looks ugly but simplifies a lot when you notice that

$$
\begin{aligned}
\int 2 \frac{y_{1}^{\prime}}{y_{1}} & =2 \ln y_{1} \\
& =\ln y_{1}^{2}
\end{aligned}
$$

so that

$$
e^{\int 2 \frac{y_{1}^{\prime}}{y_{1}}}=y_{1}^{2}
$$

We thus have

$$
\left(e^{\int p} y_{1}^{2} v^{\prime}\right)^{\prime}=e^{\int p} y_{1} F
$$

Even further, recall Abel's theorem (something very easy to derive): the Wronskian $W(t)$ of any two solutions to the homogeneous problem can be written

$$
W=C e^{-\int p}
$$

where the constant $C \neq 0$ if the two solutions are independent (that we assume is the case). Therefore, cancelling the C from both sides of the equation, we have

$$
\left(\frac{y_{1}^{2}}{W} v^{\prime}\right)^{\prime}=\frac{y_{1} F}{W}
$$

Integrating both sides of this equation, we have that

$$
v^{\prime}=\frac{W}{y_{1}^{2}} \int \frac{F y_{1}}{W}
$$

Great, now there is one more simplification to be made. Recall that the Wronskian was originally defined as a determinant:

$$
\begin{aligned}
W(t) & =\operatorname{det}\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right) \\
& =y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{W}{y_{1}^{2}} & =\frac{y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}}{y_{1}^{2}} \\
& =\left(\frac{y_{2}}{y_{1}}\right)^{\prime}
\end{aligned}
$$

where all we did was reverse the quotient rule for derivatives to get the last line. Therefore we can find v by integrating by parts

$$
\begin{aligned}
v & =\int\left(\frac{y_{2}}{y_{1}}\right)^{\prime} \int \frac{F y_{1}}{W} \\
& =\frac{y_{2}}{y_{1}} \int \frac{F y_{1}}{W}-\int \frac{F y_{1}}{W} \frac{y_{2}}{y_{1}} \\
& =\frac{y_{2}}{y_{1}} \int \frac{F y_{1}}{W}-\int \frac{F y_{2}}{W}
\end{aligned}
$$

Finally, we recall that $y=v y_{1}$ to obtain a particular solution to the original non-homogeneous equation:

$$
y(t)=-y_{1} \int \frac{F y_{2}}{W}+y_{2} \int \frac{F y_{1}}{W}
$$

which is exactly the same as the variation of parameters equation derived in the chapter.
This method is a bit more computational but has the advantage that it works for any form of the inhomogeneity. (The easier method of the undetermined coefficients only works easily when $F=\sin , \cos , e^{ \pm a t}$, when F is a polynomial or F is a sum or product of these functions)

