
Tutorial Problems #7
MAT 292 – Calculus III – Fall 2015

Solutions

Problems 3.5.13 and 3.5.15 Given a system

x′ =
(
a11 a12

a21 a22

)
x

we want to know the qualitative behaviour of solutions x(t) for any values of the matrix coefficients aij . Recall
that these are determined by the eigenvalues of the matrix A = aij . To this end we solve the equation

det
(
a11 − λ a12

a21 a22 − λ

)
= 0.

Expanding the determinant, we have a quadratic equation for the eigenvalues λ:

λ2 − (a11 + a22)λ+ (a11a22 − a12a21) = 0

Using the quadratic formula, we find two eigenvalues λ+ and λ− given by

λ± = 1
2 (a11 + a22)± 1

2
√

(a11 + a22)2 − 4(a11a22 − a12a21)

= 1
2 (a11 + a22)

[
1±

√
1− 4a11a22 − a12a21

(a11 + a22)2

]
Recall that the trace trA = a11 + a22 and determinant det A = a11a22 − a12a21 so that

λ± = 1
2trA

(
1±

√
1− 4det A

trA2

)
We now ask the following questions:

1. When do all solutions tend to zero as t→∞?

Well recall that for solutions to tend to zero, it must be the case that <λ < 0 that is the real part of the
eigenvalue is negative.

(a) trA > 0

In this case it is easy to see that at least one solution will not tend to zero. Indeed, if trA = 0, we
have a center (see case ) and if trA > 0 then either

1− 4det A
trA2 < 0 =⇒ Unstable Spiral
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or
1− 4det A

trA2 > 0 =⇒ λ+ > 0

(b) trA < 0

In this case we just need to ensure 1− 4 det A
trA2 < 0. That is because

1− 4det A
trA2 > 1 =⇒ λ− > 0

However
1− 4det A

trA2 < 0 ⇐⇒ det A > 0

We conclude that all solutions will tend to zero if and only if trA < 0 and det A > 0.

2. When do we have a node?

Recall that we have node when either both eigenvalues are positive or both are negative.

Observe that if det A > 0 and 1− 4 det A
trA2 > 0 then

1 >
√

1− 4det A
trA2 > 0

and

1±
√

1− 4det A
trA2 > 0

Therefore if trA > 0 then both λ+ and λ− are positive. Else if trA < 0 then both λ+ and λ− are negative.
Therefore we have a stable or unstable node depending on the sign of trA.

3. When do we have a saddle point?

Recall that we have a saddle point when one eigenvalue is positive and the other is negative.

Suppose that det A < 0. Then 1− 4 det A
trA2 > 1 and we have that

1 +
√

1− 4det A
trA2 > 0

1−
√

1− 4det A
trA2 < 0.

So if trA > 0 then λ+ > 0 and λ− < 0. Meanwhile if trA < 0 then λ+ < 0 and λ− > 0. In either case we
have a saddle point.

4. When do we have a spiral?

Recall that we have a spiral when the eigenvalues are complex with a non-zero real part. To have a
complex eigenvalue we need that 1 − 4 det A

trA2 < 0 while to have a nonzero real part we need trA 6= 0. In
this case we have

λ± = 1
2trA

[
1± i

√
−
(

1− 4det A
trA2

)]
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5. When do we have a center?

Recall that we have center when both the eigenvalues are purely imaginary. Therefore, we need that
trA = 0. Since the expression 1 − 4 det A

trA2 makes no sense when trA = 0, we go back to the original
definition of λ± and set trA = 0:

λ± = 1
2

(
trA±

√
trA2 − 4 det A

)
= ±1

2
√

det A

Clearly we will have a center when det A < 0.

6.2.10.(a) W is given by

W (t) = C exp
(∫ t

t0

tr
(
P(s)

)
ds

)
.

If W is zero or not depends on the initial condition thus agreeing with Theorem 6.2.5 and Theorem 6.2.1 which
asserts uniqueness of the solution when P(t) is continuous (as it is assumed here).

6.5.15 Let us find the fun matrix for the system of equations

x′ =
(
−1 −4
1 −1

)
x

Remember that the structure of these types of differential equations is governed by the eigenvalues and eigen-
vectors of the matrix

A =
(
−1 −4
1 −1

)
.

So let’s find the eigenvalues: we solve

det
(
−1− λ −4

1 −1− λ

)
= 0

(λ+ 1)2 + 4 = 0

λ = −1± 2i

and find the corresponding eigenvectors. For λ1 = −1 + 2i we find ξ1 =
(
ξ1

ξ2

)
satisfying

Aξ1 = (−1 + 2i) ξ1

Both components of this vector equation read

−ξ1 + 4ξ2 = (−1 + 2i) ξ1

ξ2 = i

2ξ1
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and therefore ξ1 =
(

2
i

)
is a good choice for the first eigenvector. You may check that the second eigenvector

ξ2 satisfying

Aξ2 = (−1− 2i) ξ2

is just the complex conjugate ξ2 =
(

2
−i

)
. We find that the general solution reads

x(t) = e−t

[
c1

(
2
i

)
e2it + c2

(
2
−i

)
e−2it

]
.

Here c1 and c2 are complex numbers set by the initial conditions x(0). Now since we want to solve the system
for three different initial conditions, it would be nice to not have to solve for these coefficients every time. To

this end we solve for c1 and c2 if x(0) =
(

1
0

)
. We find

(
1
0

)
= c1

(
2
i

)
+ c2

(
2
−i

)
2 (c1 + c2) = 1

i (c1 − c2) = 0

c1 = c2 = 1
4 .

Therefore the solution corresponding to this initial condition is

x1(t) =
(

1
2
(
e2it + e−2it

)
i
4
(
e2it − e−2it

))

=
(

cos (2t)
− sin (2t)

)

where we have used the definition of sin and cos coming from Euler’s equation in the last line. Similarly, we

solve for c1 and c2 corresponding to the initial condition x(0) =
(

0
1

)
. We find

(
0
1

)
= c1

(
2
i

)
+ c2

(
2
−i

)
2(c1 + c2) = 0

i(c1 − c2) = 0

c1 = − i2

c2 = + i

2
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Therefore the solution corresponding to this initial condition is

x2(t) =
(
−i
(
e2it − e−2it

)
1
2
(
e2it + e−2it

) )

=
(

2 sin (2t)
cos (2t)

)

From these two special solutions we construct the fun matrix (also known as eAt):

eAt = Φ(t) =
(

cos (2t) 2 sin (2t)
− 1

2 sin (2t) cos (2t)

)

And now finding the solution corresponding to any initial value is just a matter of matrix multiplication:

• If x(0) =
(

3
1

)
then

x(t) = Φ(t)
(

3
1

)

=
(

3 cos(2t) + 2 sin(2t)
− 3

2 sin(2t) + cos(2t)

)

• If x(0) =
(

2
2

)
then

x(t) = Φ(t)
(

2
2

)

=
(

2 cos(2t) + 4 sin(2t)
− sin(2t) + 2 cos(2t)

)

• If x(0) =
(
−2
5

)
then

x(t) = Φ(t)
(
−2
5

)

=
(
−2 cos(2t) + 10 sin(2t)

3 sin(2t) + 5 cos(2t)

)

The point to take away from all this is that if you have to solve the same linear system for a large number
of initial conditions it is well worth it to find the fundamental matrix. The problem is simplified to simple
matrix multiplication.
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