Tutorial Problems \#4

MAT 292 - Calculus III - Fall 2015
Q. Consider the $\mathrm{DE} y^{\prime}=f(y)$ where the function $f(y)$ is differentiable. Assume also that $f\left(y_{1}\right)=f\left(y_{2}\right)=0$ and $y_{1}<y_{2}$.
(a) If the equilibrium solution $y=y_{1}$ is stable, than what do we know about $f(y)$ around the point y_{1} ?
(b) Assume that both equilibria $y=y_{1}$ and $y=y_{2}$ are stable. Show that there must be another equilibria point y^{*} such that $y_{1}<y^{*}<y_{2}$ and $y=y^{*}$ is unstable.

Solution

(a) We know if $y=y_{1}$ is stable, then we have for small positive ϵ that

$$
f\left(y_{1}-\epsilon\right)>0 \quad \& \quad f\left(y_{1}+\epsilon\right)<0
$$

(b) Since $y=y_{1}$ and $y=y_{2}$ are stable, we have for small positive ϵ that

$$
f\left(y_{1}+\epsilon\right)<0 \quad \& \quad f\left(y_{2}-\epsilon\right)>0
$$

We also know that $f(y)$ is continuous, thus the Intermediate value theorem gives us that there exists $y^{*} \in\left(y_{1}, y_{2}\right)$ such that

$$
f\left(y^{*}\right)=0 \quad \& \quad f\left(y^{*}-\epsilon^{\prime}\right)<0 \quad \& \quad f\left(y^{*}+\epsilon^{\prime}\right)>0
$$

i.e. $y=y^{*}$ is an unstable equilibrium.
2.4-\# 24 Consider the equation

$$
d y / d t=a y-y^{3}=y\left(a-y^{2}\right)
$$

(a) Again consider the cases $a<0, a=0$ and $a>0$. In each case, find the critical points, draw the phase line, and determine whether each critical point is asymptotically stable, semistable, or unstable.
-Recall that a critical point is simply $y^{\prime}=0$, thus

$$
y^{\prime}=0 \Longleftrightarrow y=0 \quad \text { or } \quad a-y^{2}=0 \Longrightarrow y= \pm \sqrt{a}
$$

If $a<0$ we have that $y=0$ is the only critical point. If $a=0$, we again have $y=0$. If $a>0$, we have the two roots $\pm \sqrt{a}$ and $y=0$.
(b) In each case, sketch several solutions of the ODE in the y-plane

【We sketch the resulting phase portraits.

(c) Draw the bifurcation diagram for the ODE. Note that $a=0$ is a pitch fork bifurcation.

2.5-\# 23 Show that if $\left(N_{x}-M_{y}\right) / M=Q$, where Q is a function of y only, then the differential equation

$$
M+N y^{\prime}=0
$$

has an integrating factor of the form

$$
\mu(y)=\exp \int Q(y) d y
$$

Solution Suppose that $M+N y^{\prime}=0$ is not exact and consider

$$
\underbrace{\mu(y) M}_{\bar{M}} d x+\underbrace{\mu(y) N}_{\bar{N}} d y=0
$$

We'll try to find the condition on μ to make this exact. How do we do this? Check $M_{y}^{\prime}=N_{x}^{\prime}$.

$$
\begin{gathered}
\bar{M}_{y}=\frac{\partial}{\partial y}(\mu(y) M)=\mu^{\prime}(y) M+\mu(y) M_{y} \\
\bar{N}_{x}=\frac{\partial}{\partial x}(\mu(y) N)=\mu(y) N_{x}
\end{gathered}
$$

Using these equations, we can form an ODE in μ. Namely

$$
0=\bar{N}_{x}-\bar{M}_{y}=\mu(y)\left(N_{x}-M_{y}\right)-\mu^{\prime}(y) M \Longleftrightarrow \frac{\mu^{\prime}(y)}{\mu(y)}=\frac{N_{x}-M_{y}}{M}=Q
$$

By solving the above ODE for μ, we obtain

$$
\mu(y)=\exp \int Q(y) d y
$$

2.5-\#26 Find an integrating factor and solve the given equation

$$
y^{\prime}=e^{2 x}+y-1
$$

Solution Rewrite the ODE in differential form

$$
\underbrace{\left(e^{2 x}+y-1\right)}_{M} d x+\underbrace{(-1)}_{N} d y=0
$$

We check the partials.

$$
\begin{aligned}
& M_{y}=1 \\
& N_{x}=0
\end{aligned}
$$

Since the equation is not exact, we'll need an integrating factor. Following the same logic as the previous question, we deduce

$$
\mu(x)=\exp \int\left(\frac{M_{y}-N_{x}}{N}\right) d x=\exp \left(-\int d x\right)=e^{-x}
$$

will work. Let's check

$$
\begin{gathered}
\underbrace{\left(e^{x}+e^{-x}(y-1)\right.}_{\bar{M}} d x+\underbrace{\left(-e^{-x}\right)}_{\bar{N}} d y=0 \\
\bar{M}_{y}=e^{-x} \\
\bar{N}_{x}=e^{-x}
\end{gathered}
$$

Now the equation is exact! Thus we can just integrate each part respectively.

$$
\begin{aligned}
\int \bar{M} d x= & \int\left(e^{x}+e^{-x}(y-1)\right) d x=e^{x}+e^{-x}(1-y)+C(y) \\
& \int \bar{N} d y=\int-e^{-x} d y=-y e^{-x}+\tilde{C}(x)
\end{aligned}
$$

By comparing the above equation, we see that a function satisfying the partials is

$$
F(x, y)=e^{x}+e^{-x}(1-y)
$$

This implies the general solution is

$$
\text { const }=e^{x}+e^{-x}(1-y)
$$

2.4-\#18 A pond forms as water collects in a conical depression of radius a and depth h. Suppose that water flows in at a constant rate k and is lost through evaporation at a rate proportional to the surface area.
(a) Show that the volume $V(t)$ of water in the pond at time t satisfies the differential equation

$$
d V / d t=k-\alpha \pi(3 a / \pi h)^{2 / 3} V^{2 / 3}
$$

where α is the coefficient of evaporation
-TThe model we'd like to use is

$$
\frac{d V}{d t}=V_{\text {in }}-V_{o u t}
$$

we're given that $V_{\text {in }}=k$, and that $V_{\text {out }}=\alpha S A$ (out of the top, i.e. just a circle). We just have to compute the surface area of the cone in terms of it's Volume. Recall that

$$
V_{\text {cone }}=\frac{\pi r^{2} l}{3} \quad \& \quad S A_{\text {circle }}=\pi r^{2}
$$

where r is radius and l is the length. By drawing a picture, you'll find that the ratio between the length and radius is always the same i.e. $l / r=h / a$. Thus we have

$$
\begin{aligned}
V_{\text {cone }}= & \frac{\pi r^{2} l}{3}=\frac{\pi r^{3} h}{3 a} \Longrightarrow \sqrt[3]{\frac{3 a V_{\text {cone }}}{\pi h}}=r \\
& \Longrightarrow S A=\pi\left(\frac{3 a V_{\text {cone }}}{\pi h}\right)^{2 / 3}
\end{aligned}
$$

Therefore, the ODE is

$$
d V / d t=k-\alpha \pi(3 a / \pi h)^{2 / 3} V^{2 / 3}
$$

(b) Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically stable?

【Recall that equilibrium occurs when $V^{\prime}=0$, so we have to find the roots of the ODE. We see

$$
\frac{d V}{d t}=k-\alpha \pi(3 a / \pi h)^{2 / 3} V^{2 / 3}=0 \Longleftrightarrow V= \pm \frac{(k / \alpha \pi)^{3 / 2} \pi h}{3 a}
$$

Since the Volume cannot be negative, we discard that root. To find the depth l, just substitute back in as in the previous part.
(c) Find a condition that must be satiated if the pond is not to overflow.

【For the pond to not overflow, we need $d V / d t=0$ when the cone is full. Thus

$$
V_{\text {cone }}=\frac{\pi a^{2} h}{3}=\frac{(k / \alpha \pi)^{3 / 2} \pi h}{3 a} \Longrightarrow k=\alpha \pi a^{4 / 3}
$$

