
Tutorial Problems #4
MAT 292 – Calculus III – Fall 2015

Solutions

Q. Consider the DE y′ = f(y) where the function f(y) is differentiable. Assume also that f(y1) = f(y2) = 0

and y1 < y2.

(a) If the equilibrium solution y = y1 is stable, than what do we know about f(y) around the point y1?

(b) Assume that both equilibria y = y1 and y = y2 are stable. Show that there must be another equilibria

point y∗ such that y1 < y∗ < y2 and y = y∗ is unstable.

Solution

(a) We know if y = y1 is stable, then we have for small positive ε that

f(y1 − ε) > 0 & f(y1 + ε) < 0

(b) Since y = y1 and y = y2 are stable, we have for small positive ε that

f(y1 + ε) < 0 & f(y2 − ε) > 0

We also know that f(y) is continuous, thus the Intermediate value theorem gives us that there exists

y∗ ∈ (y1, y2) such that

f(y∗) = 0 & f(y∗ − ε′) < 0 & f(y∗ + ε′) > 0

i.e. y = y∗ is an unstable equilibrium.

2.4 - # 24 Consider the equation

dy/dt = ay − y3 = y(a− y2)

(a) Again consider the cases a < 0, a = 0 and a > 0. In each case, find the critical points, draw the phase

line, and determine whether each critical point is asymptotically stable, semistable, or unstable.

¶Recall that a critical point is simply y′ = 0, thus

y′ = 0 ⇐⇒ y = 0 or a− y2 = 0 =⇒ y = ±
√
a

If a < 0 we have that y = 0 is the only critical point. If a = 0, we again have y = 0. If a > 0, we have the

two roots ±
√
a and y = 0.
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(b) In each case, sketch several solutions of the ODE in the y-plane

¶We sketch the resulting phase portraits.

a < 0 a = 0 a > 0

(c) Draw the bifurcation diagram for the ODE. Note that a = 0 is a pitch fork bifurcation.

2.5 - # 23 Show that if (Nx −My)/M = Q, where Q is a function of y only, then the differential equation

M +Ny′ = 0

has an integrating factor of the form

µ(y) = exp

∫
Q(y)dy

Solution Suppose that M +Ny′ = 0 is not exact and consider

µ(y)M︸ ︷︷ ︸
M̄

dx+ µ(y)N︸ ︷︷ ︸
N̄

dy = 0

We’ll try to find the condition on µ to make this exact. How do we do this? Check M ′y = N ′x.

M̄y =
∂

∂y
(µ(y)M) = µ′(y)M + µ(y)My

N̄x =
∂

∂x
(µ(y)N) = µ(y)Nx

Using these equations, we can form an ODE in µ. Namely

0 = N̄x − M̄y = µ(y)(Nx −My)− µ′(y)M ⇐⇒ µ′(y)

µ(y)
=
Nx −My

M
= Q
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By solving the above ODE for µ, we obtain

µ(y) = exp

∫
Q(y)dy

2.5 - # 26 Find an integrating factor and solve the given equation

y′ = e2x + y − 1

Solution Rewrite the ODE in differential form

(e2x + y − 1)︸ ︷︷ ︸
M

dx+ (−1)︸︷︷︸
N

dy = 0

We check the partials.

My = 1

Nx = 0

Since the equation is not exact, we’ll need an integrating factor. Following the same logic as the previous

question, we deduce

µ(x) = exp

∫ (
My −Nx

N

)
dx = exp

(
−
∫
dx

)
= e−x

will work. Let’s check

(ex + e−x(y − 1)︸ ︷︷ ︸
M̄

dx+ (−e−x)︸ ︷︷ ︸
N̄

dy = 0

M̄y = e−x

N̄x = e−x

Now the equation is exact! Thus we can just integrate each part respectively.∫
M̄dx =

∫
(ex + e−x(y − 1))dx = ex + e−x(1− y) + C(y)∫
N̄dy =

∫
−e−xdy = −ye−x + C̃(x)

By comparing the above equation, we see that a function satisfying the partials is

F (x, y) = ex + e−x(1− y)

This implies the general solution is

const = ex + e−x(1− y)
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2.4 - # 18 A pond forms as water collects in a conical depression of radius a and depth h. Suppose that

water flows in at a constant rate k and is lost through evaporation at a rate proportional to the surface area.

(a) Show that the volume V (t) of water in the pond at time t satisfies the differential equation

dV/dt = k − απ(3a/πh)2/3V 2/3

where α is the coefficient of evaporation

¶The model we’d like to use is
dV

dt
= Vin − Vout

we’re given that Vin = k, and that Vout = αSA (out of the top, i.e. just a circle). We just have to compute

the surface area of the cone in terms of it’s Volume. Recall that

Vcone =
πr2l

3
& SAcircle = πr2

where r is radius and l is the length. By drawing a picture, you’ll find that the ratio between the length

and radius is always the same i.e. l/r = h/a. Thus we have

Vcone =
πr2l

3
=
πr3h

3a
=⇒ 3

√
3aVcone
πh

= r

=⇒ SA = π

(
3aVcone
πh

)2/3

Therefore, the ODE is

dV/dt = k − απ(3a/πh)2/3V 2/3

(b) Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically stable?

¶Recall that equilibrium occurs when V ′ = 0, so we have to find the roots of the ODE. We see

dV

dt
= k − απ(3a/πh)2/3V 2/3 = 0 ⇐⇒ V = ± (k/απ)3/2πh

3a

Since the Volume cannot be negative, we discard that root. To find the depth l, just substitute back in

as in the previous part.

(c) Find a condition that must be satiated if the pond is not to overflow.

¶For the pond to not overflow, we need dV/dt = 0 when the cone is full. Thus

Vcone =
πa2h

3
=

(k/απ)3/2πh

3a
=⇒ k = απa4/3
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