MAT292 - Calculus III - Fall 2014

Term Test 2 - November 6, 2014

Time allotted: 90 minutes.

Aids permitted: None.

Full Name:			
	Last	First	
Student ID:			
Email:		@mail.utoronto.ca	

Instructions

- DO NOT WRITE ON THE QR CODE AT THE TOP OF THE PAGES.
- Please have your **student card** ready for inspection, turn off all cellular phones, and read all the instructions carefully.
- DO NOT start the test until instructed to do so.
- This test contains 20 pages (including this title page). Make sure you have all of them.
- You can use pages 19–20 for rough work or to complete a question (Mark clearly).
 DO NOT DETACH PAGES 19–20.

GOOD LUCK!

$\label{eq:partial_partial} PART \ I \qquad \mbox{No explanation is necessary}.$

For questions 1–4, consider the following systems of differential equations:

(4 marks)

Letter	System Matrix	Eigenvalues and Eigenvectors	
a	$\mathbf{A} = \begin{pmatrix} -2 & -4 \\ -\frac{1}{2} & -1 \end{pmatrix}$	$\lambda_1 = -3, \vec{\xi_1} = \begin{pmatrix} 4\\1 \end{pmatrix}$	$\lambda_2 = 0, \vec{\xi_2} = \begin{pmatrix} -2\\1 \end{pmatrix}$
b	$\mathbf{A} = \begin{pmatrix} -1 & 4\\ \frac{1}{2} & -2 \end{pmatrix}$	$\lambda_1 = 0, \vec{\xi_1} = \begin{pmatrix} 4\\1 \end{pmatrix}$	$\lambda_2 = -3, \vec{\xi_2} = \begin{pmatrix} -2\\1 \end{pmatrix}$
с	$\mathbf{A} = \begin{pmatrix} -2 & 5\\ -1 & 2 \end{pmatrix}$	$\lambda_1 = -i, \vec{\xi_1} = \begin{pmatrix} 2+i\\1 \end{pmatrix}$	$\lambda_2 = i, \vec{\xi_2} = \begin{pmatrix} 2-i\\1 \end{pmatrix}$
d	$\mathbf{A} = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix}$	$\lambda_1 = i, \vec{\xi_1} = \begin{pmatrix} 2+i\\1 \end{pmatrix}$	$\lambda_2 = -i, \vec{\xi_2} = \begin{pmatrix} 2-i\\1 \end{pmatrix}$
e	$\mathbf{A} = \begin{pmatrix} -\frac{13}{8} & \frac{3}{4} \\ \frac{1}{4} & -\frac{1}{4} \end{pmatrix}$	$\lambda_1 = -\frac{7}{4}, \vec{\xi_1} = \begin{pmatrix} 6\\ -1 \end{pmatrix}$	$\lambda_2 = -\frac{1}{8}, \vec{\xi_2} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$
f	$\mathbf{A} = \begin{pmatrix} -\frac{1}{4} & -\frac{3}{4} \\ -\frac{1}{4} & -\frac{13}{8} \end{pmatrix}$	$\lambda_1 = -\frac{1}{8}, \vec{\xi_1} = \begin{pmatrix} 6\\ -1 \end{pmatrix}$	$\lambda_2 = -\frac{7}{4}, \vec{\xi_2} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$
g	$\mathbf{A} = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}$	$\lambda_1 = -1, \vec{\xi_1} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\lambda_2 = -1, \vec{\xi_2} = \begin{pmatrix} 0\\1 \end{pmatrix}$
h	$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$	$\lambda_1 = 2, \vec{\xi_1} = \begin{pmatrix} 1\\1 \end{pmatrix}$	$\lambda_2 = 2, \vec{\xi_2} = \begin{pmatrix} -1\\1 \end{pmatrix}$

Continued...

Next to each phase plane diagram, write the letter of the corresponding system of differential equations.

5. Write a differential equation whose complementary solution is

(2 marks)

$$\begin{pmatrix} y_{c}(t) = c_{1}e^{-2t} + c_{2}te^{-2t} + c_{3}te^{-2t} + c_{4} \\ y_{c}(t) = c_{1}e^{-2t} + c_{2}te^{-2t} + c_{3}te^{-2t} + c_{4} \\ y_{c}(t) = c_{1}e^{-2t} + c_{2}te^{-2t} + c_{4} \\ y_{c}(t) = c_{1}e^{-2t} + c$$

 $\gamma_{p} = \frac{(A \cos t + B \sin t)t^{2}}{+(ct^{2} + Dt + E)t^{2}}$

6. Consider the ODE $y^{(6)} + 2y^{(4)} + y^{(2)} = \cos(t) + t^2$. When using the Method of (2 marks) Undetermined Coefficients, we assume that the terms in the *particular solution* that are *not in the complementary solution* are (select all that apply):

For questions 7 and 8, consider the ODE:

7.

8.

$$ay'' + by' + cy = 0,$$

with $b^2 - 4ac < 0.$
The solutions decay while oscillating if
The solutions grow while oscillating if
The solutions grow while oscillating if
$$b = 0 = b, a = 0$$

$$co = b, a = 0$$

$$co = b, a = 0$$

$$co = 0$$

(2 marks)

PART II Justify your answers.

9. Consider the following parallel circuit.

Using Kirchhoff's First Law, we deduce that $i_1 = i_2 + i_3$, so we consider only the currents i_1 and i_2 . Using Kirchhoff's Second Law, we can show that this parallel circuit is modelled by

$$\begin{cases} \frac{di_1}{dt} = -10i_1 - 5i_2 + 30\\ \frac{di_2}{dt} = -10i_1 - 15i_2 + 30 \end{cases}$$

(a) Consider a vector $\vec{x} = \vec{i} + \vec{b}$, with $\vec{i} = \begin{pmatrix} i_1 \\ i_2 \end{pmatrix}$.

Find \vec{b} so that the system of differential equations for \vec{x} is homogeneous.

$$\frac{d\pi}{dt} = \frac{d\pi}{dt} = \begin{pmatrix} -10 & -5\\ -10 & -15 \end{pmatrix} \begin{pmatrix} \overline{x} - \overline{b} \end{pmatrix} + \begin{pmatrix} 30\\ 30 \end{pmatrix}$$

$$= \begin{pmatrix} -10 & -5\\ -10 & -15 \end{pmatrix}^{\overline{x}} + \begin{pmatrix} 10b_1 + 5b_2 + 30\\ 10b_1 + 15b_2 + 30 \end{pmatrix}$$

$$\frac{d_{acese}}{st} = \int_{c} \frac{aud}{b_{7}} \frac{b_{7}}{st}$$

$$= \sum_{l} \begin{cases} 10b_{1} + 5b_{2} = 30\\ 10b_{1} + 15b_{2} = -30 \end{cases} \implies 10b_{2} = 0 \implies b_{2} = 0$$

$$= \sum_{l} b_{l} = -3.$$

$$\sum_{l} \sum_{l} \frac{\overline{l}}_{l} = \begin{pmatrix} -3\\ 0 \end{pmatrix}$$

Continued...

(10 marks)

(b) The new system is

$$\frac{d\vec{x}}{dt} = \begin{pmatrix} -10 & -5\\ -10 & -15 \end{pmatrix} \vec{x}.$$

Find the general solution \vec{x} .

Eigentels.
$$\begin{vmatrix} -|o-r - 5| \\ -10 -|S-r| \end{vmatrix} = 0 \quad (10+r)(15+r) - 50 = 0$$
$$(=) \quad r^{2} + 25r + 100 = 0$$
$$(=) \quad r - 25 \pm \sqrt{25^{2} - 4 \cdot 10^{2}} = \frac{-25 \pm 5\sqrt{5^{2} - 4^{2}}}{2}$$
$$(=) \quad r - 25 \pm \sqrt{25^{2} - 4 \cdot 10^{2}} = \frac{-25 \pm 5\sqrt{5^{2} - 4^{2}}}{2}$$
$$r = -25 \pm 115$$
$$(=) \quad (r_{1} = -20)$$
$$(r_{1} = -20)$$
$$(r_{1} = -5)$$
$$(r_{1} = -5)$$
$$(r_{1} = -5)$$
$$(r_{1} = -5)$$
$$(r_{2} = 28)$$

$$\begin{bmatrix} 1_2 = -5 \\ -5 & -5 \\ -16 & -10 \end{bmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} l = 0 \\ \mathbf{x}_2 = -5 \\ 0 \\ l = 0 \end{bmatrix}$$

General solution

$$\vec{x} = c_1 \begin{pmatrix} 1 \\ z \end{pmatrix} e^{-2ct} + C_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-5t}$$

(c) Given the initial conditions $\vec{i}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, what is the solution \vec{i} of the original system? $\vec{i} = \vec{i} = \vec{i} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{-2zt} + C_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-st} + \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ $\vec{i}(o) = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ $= \sum_{i=1}^{n} \begin{cases} C_1 + C_2 = -3 \\ C_1 - C_2 = 0 \end{cases} = \sum_{i=1}^{n} \begin{cases} 3C_1 = -3 \\ C_2 = 2C_1 \end{cases} \Rightarrow \begin{cases} C_1 = -1 \\ C_2 = -2 \end{cases}$

(d) What is
$$i_3$$
?
 $\lambda_3 = \lambda_1 - \lambda_2 = 3 - 2 - 22 + 22 - 22 + 22 - 22 + 22 - 22 + 22 - 22 + 22 - 22 + 22 - 22 + 22 - 22 + 22 - 22 + 22 - 22 + 22 - 22 + 22 - 22 + 22 + 22 - 22 + 22$

10. Consider the following electrical circuit.

(10 marks)

The charge on the capacitor q(t) is modelled by

- $Lq'' + Rq' + \frac{1}{C}q = E(t),$
- (a) Give a condition on the constants L, R, C that guarantees that the solution oscillates. Justify your answer.

Solution oscillates if it has sin and/or 65. We need to dotain
complex nots of the Characteristic equation.
Characteristic Equation:
$$Lr^2 + Rr + \frac{1}{C} = 0$$
 (=) $r = -\frac{R \pm \sqrt{R^2 - \frac{4L}{C}}}{2L}$
This means that r_1 and r_2 are complex iff $R^2 - \frac{4L}{C} = 0$
(=) $\frac{R^2 - \frac{4L}{C}}{2L} = 0$

(b) Let L = 1, R = 0, and C = ¹/₄, and E(t) = sin(2t). Also assume that the capacitor starts with no charge and the circuit starts with no current. Find the solution of this initial-value problem. (Hint. Recall that current i(t) = q'(t))

$$y^{\mu} + 4y = \sin(2t)$$
Chus. $eq. : r^{2} \cdot 4 = 6 = r = \pm 2i$
So $y^{\mu} + 4y = C_{1} \cos(2t) + C_{1} \sin(2t)$

Veltal of Underminal Confluents:
 $y_{p} = 4t\cos(2t) + 6t\sin(2t)$
 $y'_{p} = 4t\cos(2t) + 6t\sin(2t) + 8t\sin(2t) + 28t\cos(2t)$
 $y'_{p} = -24\sin(2t) - 24\sin(2t) + 28\cos(2t) + 28\cos(2t)$
 $y'_{p} = -24\sin(2t) - 24\sin(2t) + 28\cos(2t) + 28\cos(2t)$
 $-94t\cos(2t) - 94t\cos(2t) + 28\cos(2t) + 28\cos(2t)$
 $-94t\cos(2t) - 94t\cos(2t) + 28\cos(2t) - 94t\sin(2t)$

So $y''_{n} + 4y$
 $y''_{n} - 44\cos(2t) - 44t\cos(2t) + 48\cos(2t) - 94t\sin(2t)$
 $40t\sin(2t) - 94t\cos(2t) - 94t\cos(2t) - 94t\sin(2t)$
 $= \sin(2t)$
 $(=) \begin{cases} -4A = 1 \\ 4B = 0 \end{cases} = 2 \begin{cases} A = -\frac{14}{8} \\ B = 6 \end{cases}$
 $y'_{p} = -\frac{1}{4}\cos(2t)$.

Createral Solution is $y = C_{1}\cos(3t) + C_{2}\sin(3t) - \frac{1}{4}\cos(2t)$
 $\begin{cases} y_{1}(s) = C_{1} = 0 \\ y'_{1}(s) = 2C_{2} - \frac{1}{4} = 0 \Rightarrow C_{2} = \frac{18}{8}$

Solution. $q = \frac{1}{8}\sin(2t) - \frac{1}{4}\cos(2t)$
Page 9 of 20

Continued...

(c) How does the solution to (b) behave (grow / decay / oscillate) as t becomes larger and larger? Justify your answer.

(Hint. You don't need to have solved (b) to answer this question)

It grows while oscillating. The circuit is resonating!

11. Consider the ODE

$$y'' - (3+2t)y' + (6t-2)y = 0. \tag{(\star)}$$

(10 marks)

(a) Show that $y_1(t) = e^{t^2}$ is a solution of this differential equation.

$$y_{1}^{\prime} = zt z^{12} \quad \text{and} \quad y_{1}^{\prime \prime} = (z + 4t^{2})z^{12}$$

$$\sum_{a} y_{1}^{\prime \prime} - (3+2t)y_{1}^{\prime} + (tt-2)y_{1} = (tt-4)t^{12}y_{1} - (tt-4)t^{12}y_{1} - (tt-4)t^{12}y_{1} = 0$$

(b) Using reduction of order, consider a second solution of the form

$$y_2(t) = u(t)y_1(t).$$

Deduce a differential equation for u(t).

$$y_{k}^{2} = u^{1}y_{1} + u^{1}y_{1}^{'}$$

$$y_{k}^{0} = \mu^{0}y_{1} + 2u^{1}y_{1}^{'} + \mu y_{1}^{0}$$

$$= y_{2}^{0} - (3+2t)y_{2}^{2} + (6t-2)y_{2}$$

$$= u^{0}y_{1} + 2u^{1}y_{1}^{'} + \mu y_{1}^{0} - (3+2t)(u^{1}y_{1} + \mu y_{1}^{'}) + (6t-2)\mu y_{1}$$

$$= u(y_{1}^{0} - (3+2t)y_{1}^{'} + (6t-2)y_{1}) + \mu^{0}y_{1} + 2\mu^{1}y_{1}^{'} - (3+2t)\mu^{1}y_{1} = 0$$

$$= u(y_{1}^{0} - (3+2t)y_{1}^{'} + (6t-2)y_{1}) + \mu^{0}y_{1} + 2\mu^{1}y_{1}^{'} - (3+2t)\mu^{1}y_{1} = 0$$

$$(=) \quad \mu'' + 4t \ \mu' - (3+2t) \ \mu' = 0$$
$$(=) \quad \mu'' + (2t-3) \ \mu' = 0$$

(c) Find u(t).

(**Hint.** You can leave u in the form of an integral)

$$V = \mu^{1} \quad \text{Satisfies} \quad v' + (2t-3)v = 0$$

$$(-) \quad v = C \ \ell^{3t-t^{2}}$$

$$(=) \quad \mu = C \ \int \ell^{3t-t^{2}} A t$$

(d) Write the second solution $y_2(t)$ of (\star) using a definite integral between 0 and t. Show that y_1 and y_2 form a fundamental set of solutions.

$$\sum_{i=1}^{2} y_{i}^{2} = u y_{i} = e^{t^{2}} \int_{0}^{t} e^{3s-s^{2}} ds$$

$$y_{i}^{2} = 2te^{t^{2}} \int_{0}^{t} e^{3s-s^{2}} ds + e^{3t}$$
Then
$$W[y_{i}, y_{2}] = y_{i}y_{2}^{2} - y_{i}^{2}y_{2} = y_{i} (y_{2}^{2} - 2ty_{2}^{2})$$

$$= e^{t^{2}} \left[2te^{t^{2}} \int_{0}^{t} e^{3s-s^{2}} ds + e^{3t} - 2te^{t^{2}} \int_{0}^{t} e^{3s-s^{2}} ds \right]$$

$$= e^{3t+t^{2}} + 0 \left[\frac{1}{2} \right]$$

(e) What is the general solution of the differential equation (\star) ?

.

12. Consider the system of differential equations:

$$\vec{x}' = \begin{pmatrix} -2 & -4 \\ -\frac{1}{2} & -1 \end{pmatrix} \vec{x}.$$

(a) Find two linearly independent solutions $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$.

(a) The two means means matrices solutions 2.7 and 2.7.
Figenvalues:
$$\begin{vmatrix} -2-r & -4 \\ -1/2 & -1-r \end{vmatrix} = 0 \quad (=) \quad (2+r)(4+r) - 2 = 0$$

(=) $1^{1}+3r = 0 \quad (=) \quad r(r+3)=0$
(=) $1^{1}+3r = -2 \quad S_{2}$
(=) $1^{1}+3r = -2 \quad S_{2}$

Continued...

(10 marks)

•

(b) Consider the eigenvectors found in (a). Construct a matrix T by putting each eigenvector as a column.

Find the matrix \mathbf{T}^{-1} .

(Hint. For the forgetful ones,
$$\mathbf{A}^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
)

$$\mathbf{T} = \begin{pmatrix} -2 & 4 \\ 1 & 1 \end{pmatrix} \qquad = \mathbf{T}^{-1} = \frac{1}{-6} \begin{pmatrix} 1 & -4 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} -1/6 & \frac{2}{3} \\ 1/6 & \frac{1}{3} \end{pmatrix}$$

(c) Consider a new variable $\vec{x} = \mathbf{T} \vec{y}$. Which system of differential equations does it satisfy?

$$\vec{\gamma}_{k}^{1} = \begin{pmatrix} -2 & -4 \\ -1/2 & -1 \end{pmatrix}^{2} \qquad (=) \quad T\vec{\gamma}_{1}^{1} = \begin{pmatrix} -2 & -4 \\ -1/k & -1 \end{pmatrix}^{2} \vec{\gamma}_{1}^{1}$$

$$(=) \quad \vec{\gamma}_{1}^{1} = \begin{bmatrix} T^{-1} \begin{pmatrix} -2 & -4 \\ -1/k & -1 \end{pmatrix}^{2} \vec{\gamma}_{1}^{1}$$

$$(=) \quad \vec{\gamma}_{1}^{1} = \begin{bmatrix} T^{-1} \begin{pmatrix} -2 & -4 \\ -1/k & -1 \end{pmatrix}^{2} \vec{\gamma}_{1}^{1}$$

$$(=) \quad \vec{\gamma}_{1}^{1} = \begin{pmatrix} -1/k & 2/k \\ -1/k & -1 \end{pmatrix} \begin{pmatrix} 0 & -12 \\ 0 & -3 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & -3 \end{pmatrix}$$

$$\sum_{y} \frac{y}{y} = \begin{pmatrix} 0 & 0 \\ 0 & -3 \end{pmatrix}^{y}$$

(d) Find
$$\vec{y}$$
.
 $\vec{y} = \begin{pmatrix} c_1 \\ c_2 \cdot t \end{pmatrix}$

(e) What is the special fundamental matrix Φ for the system of differential equations in (c)?

USE THIS PAGE TO CONTINUE OTHER QUESTIONS.

USE THIS PAGE TO CONTINUE OTHER QUESTIONS.