
MAT292 - Calculus III - Fall 2014

Term Test 2 - November 6, 2014

Time allotted: 90 minutes. Aids permitted: None.

Full Name:
Last First

Student ID:

Email: @mail.utoronto.ca

Instructions

• DO NOT WRITE ON THE QR CODE AT THE TOP OF THE PAGES.

• Please have your student card ready for inspection, turn o↵ all cellular phones, and read all the

instructions carefully.

• DO NOT start the test until instructed to do so.

• This test contains 20 pages (including this title page). Make sure you have all of them.

• You can use pages 19–20 for rough work or to complete a question (Mark clearly).

DO NOT DETACH PAGES 19–20.

GOOD LUCK!



PART I No explanation is necessary.

For questions 1–4, consider the following systems of di↵erential equations: (4 marks)

Letter System Matrix Eigenvalues and Eigenvectors

a A =

 
�2 �4

�1
2 �1

!
�1 = �3, ~⇠1 =

 
4

1

!
�2 = 0, ~⇠2 =

 
�2

1

!

b A =

 
�1 4
1
2 �2

!
�1 = 0, ~⇠1 =

 
4

1

!
�2 = �3, ~⇠2 =

 
�2

1

!

c A =

 
�2 5

�1 2

!
�1 = �i, ~⇠1 =

 
2 + i

1

!
�2 = i, ~⇠2 =

 
2 � i

1

!

d A =

 
2 �5

1 �2

!
�1 = i, ~⇠1 =

 
2 + i

1

!
�2 = �i, ~⇠2 =

 
2 � i

1

!

e A =

 
�13

8
3
4

1
4 �1

4

!
�1 = �7

4 ,
~⇠1 =

 
6

�1

!
�2 = �1

8 ,
~⇠2 =

 
1

2

!

f A =

 
�1

4 �3
4

�1
4 �13

8

!
�1 = �1

8 ,
~⇠1 =

 
6

�1

!
�2 = �7

4 ,
~⇠2 =

 
1

2

!

g A =

 
�1 0

0 �1

!
�1 = �1, ~⇠1 =

 
1

0

!
�2 = �1, ~⇠2 =

 
0

1

!

h A =

 
2 0

0 2

!
�1 = 2, ~⇠1 =

 
1

1

!
�2 = 2, ~⇠2 =

 
�1

1

!
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Next to each phase plane diagram, write the letter of the corresponding system of di↵erential equations.

-4 -3 -2 -1 0 1 2 3 4

-2

-1

1

2

-4 -3 -2 -1 0 1 2 3 4

-2

-1

1

2

1. This is system 2. This is system

-4 -3 -2 -1 0 1 2 3 4

-2

-1

1

2

-4 -3 -2 -1 0 1 2 3 4

-2

-1

1

2

3. This is system 4. This is system

5. Write a di↵erential equation whose complementary solution is (2 marks)

yc(t) = c1e
�2t + c2te

�2t + c3e
�2t + c4
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6. Consider the ODE y(6) + 2y(4) + y(2) = cos(t) + t2. When using the Method of (2 marks)

Undetermined Coe�cients, we assume that the terms in the particular solution that are not in the

complementary solution are (select all that apply):

(a) A cos t

(b) Bt cos t

(c) Ct2 cos t

(d) D sin t

(e) Et sin t

(f) Ft2 sin t

(g) G

(h) Ht

(i) It2

(j) Jt3

(k) Kt4

(l) Lt5

(m) Met

(n) Ntet

(o) Ot2et

(p) Pe�t

(q) Qte�t

(r) Rt2e�t

For questions 7 and 8, consider the ODE: (2 marks)

ay00 + by0 + cy = 0,

with b2 � 4ac < 0.

7. The solutions decay while oscillating if .

8. The solutions grow while oscillating if .
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PART II Justify your answers.

9. Consider the following parallel circuit. (10 marks)

Using Kirchho↵’s First Law, we deduce that i1 = i2 + i3, so

we consider only the currents i1 and i2.

Using Kirchho↵’s Second Law, we can show that this parallel

circuit is modelled by

8
><

>:

di1
dt

= �10i1 � 5i2 + 30

di2
dt

= �10i1 � 15i2 + 30

E
+

�6V

R
2

=
1�

R1 = 2�

L
1

=
0.

1H

L2 = 0.2H

i1i1i1

i2i2i2 i3i3i3

i1i1i1

(a) Consider a vector ~x =~i +~b, with ~i =

 
i1

i2

!
.

Find ~b so that the system of di↵erential equations for ~x is homogeneous.
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(b) The new system is

d~x

dt
=

 
�10 �5

�10 �15

!
~x.

Find the general solution ~x.
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(c) Given the initial conditions ~i(0) =

 
0

0

!
, what is the solution ~i of the original system?

(d) What is i3?
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10. Consider the following electrical circuit. (10 marks)

The charge on the capacitor q(t) is modelled by

Lq00 + Rq0 +
1

C
q = E(t),

L

inductor

E R resistor

capacitor

C

(a) Give a condition on the constants L, R, C that guarantees that the solution oscillates. Justify

your answer.
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(b) Let L = 1, R = 0, and C = 1
4 , and E(t) = sin(2t). Also assume that the capacitor starts with

no charge and the circuit starts with no current. Find the solution of this initial-value problem.

(Hint. Recall that current i(t) = q0(t))
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(c) How does the solution to (b) behave (grow / decay / oscillate) as t becomes larger and larger?

Justify your answer.

(Hint. You don’t need to have solved (b) to answer this question)
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11. Consider the ODE (10 marks)

y00 � (3 + 2t)y0 + (6t � 2)y = 0. (?)

(a) Show that y1(t) = et
2

is a solution of this di↵erential equation.
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(b) Using reduction of order, consider a second solution of the form

y2(t) = u(t)y1(t).

Deduce a di↵erential equation for u(t).
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(c) Find u(t).

(Hint. You can leave u in the form of an integral)
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(d) Write the second solution y2(t) of (?) using a definite integral between 0 and t. Show that y1

and y2 form a fundamental set of solutions.

(e) What is the general solution of the di↵erential equation (?) ?
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12. Consider the system of di↵erential equations: (10 marks)

~x0 =

 
�2 �4

�1
2 �1

!
~x.

(a) Find two linearly independent solutions ~x(1) and ~x(2).
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(b) Consider the eigenvectors found in (a). Construct a matrix T by putting each eigenvector as a

column.

Find the matrix T�1.
✓
Hint. For the forgetful ones, A�1 = 1

|A|

 
d �b

�c a

!!
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(c) Consider a new variable ~x = T ~y. Which system of di↵erential equations does it satisfy?
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(d) Find ~y.

(e) What is the special fundamental matrix ��� for the system of di↵erential equations in (c)?
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USE THIS PAGE TO CONTINUE OTHER QUESTIONS.
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USE THIS PAGE TO CONTINUE OTHER QUESTIONS.

Page 20 of 20 The end.


