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PART I. No explanation is necessary. (20 Marks)

1. Let y(t) be the solution of the initial-value problemy′ = sin(y) cos(y),

y(0) = a.

For which value of a do we have lim
t→∞

y(t) = 0?

(a) a = −1.

(b) a = 0.

(c) a = 1.

(d) a =
π

2
.

(e) a =∞.

(f) There is no such a.

2. A 3 V battery is connected to an RC–circuit. The circuit has capacitance C = 1
25 F and the resistance

is R = 5 Ω. The differential equation for an RC-circuit is

R
dq

dt
+
q

C
= E(t),

with i(t) = q′(t)i(t) = q′(t)i(t) = q′(t). Then

lim
t→∞

i(t) = 0 .

3. Let y(x) be the unique solution of the initial-value problem
sin(x)

dy

dx
+ cos(x)y =

1

x+ 1
,

y(1) = −2

Then, the largest interval where there exists a unique solution is:

x ∈ (0, π) .
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4. Let y(x) be a solution to the differential equation

dy

dx
= ey cos(x),

which is defined in some interval centered at x0 =
π

2
. Then, the graph of the solution y(x) has what

kind of point at x0 =
π

2
?

(Hint: Do not try to solve the DE)

(a) A local maximum.

(b) A local minimum.

(c) A vertical asymptote.

(d) An inflection point.

(e) None of the above.

5. Consider the differential equation y′′′ − 7y′′ + 15y′ − 9y = te3t + et sin(t). To use the method of

undetermined coefficients, we assume that the particular solution has the form:

yp(t) = (At+B)t2e3t + Cet sin(t) +Det cos(t) .

(Hint. 1 is a root of r3 − 7r2 + 15r − 9)

6. Let f(t) = e−st and g(t) = 1 with s > 0. Then

lim
t→∞

(f ∗ g)(t) =
1

s
.

7. The Laplace Transform of the function f(t) = t4eπt exists for:

s ∈ (π,∞) .

8. Suppose that f(x) has the Fourier sine series expansion

f(x) =
∞∑
n=0

(−1)n

n!
sin(2nx) for 0 < x < π.

Then ∫ π

0
f(x) sin(6x) dx =

π

2

(−1)

2!
= − π

12
.
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PART II. Answer the following questions. Justify your answers.

9. Consider the following initial-value problem: (16 Marks)
sin(y) + x cos(y)

dy

dx
= 0

y(2) =
π

2
.

(a) Without solving, what can we say about the existence and uniqueness of solution?

Solution. First, write the differential equation in the form of the Existence and Uniqueness

Theorem for Nonlinear First Order DEs:

dy

dx
= −x tan(y).

The function x tan(y) is not continuous for y − π
2 , so we cannot deduce anything about the

existence and uniqueness of solution without trying to solve it.
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(b) Find y(x) (you can leave the solution in implicit form).

Solution. This equation is exact. Indeed,

M(x, y) = sin y and N(x, y) = x cos y

satisfy

My = cos(y) = Nx.

Then we can find a function Φ(x, y) satisfying

Φx = M and Φy = N.

We have

Φ =

∫
M dx = x sin y + h(y),

and

x cos(y) = N = Φy = x cos y + h′(y),

thus

h′(y) = 0 ⇒ h(y) = C.

So we have

Φ(x, y) = x sin y.

The solution satisfies the implicit equation:

Φ(x, y) = C ⇔ x sin y = C.

We now use the initial condition to find the constant C:

2 sin
π

2
= C ⇔ 2 = C.

The solution is given by

x sin y = 2.
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10. Consider the initial-value problem (16 Marks)y′ + p(t)y = g(t)y2

y(0) = y0

(a) Consider the new variable u = 1
y . What initial-value problem does u satisfy?

Solution. Since u =
1

y
, we have

u′ = − 1

y2
y′ ⇔ y′ = −y2u′ ⇔ y′ = − 1

u2
u′.

Thus

−y2u′ + p(t)
1

u
= g(t)

1

u2
⇔ −u′ + p(t)u = g(t).

The initial condition becomes:

u(0) =
1

y(0)
=

1

y0
= u0.
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(b) Consider p(t) = −2t, g(t) = −t, and y0 = 1.

Find u(t).

Solution. With these definitions, u satisfies the initial-value problemu′ + 2tu = t

u(0) = 1

This equation is linear, so we multiply the DE by the integrating factor µ(t), which satisfies

µ = e
∫
2t dt = et

2
.

We get (
et

2
u
)′

= tet
2 ⇔ et

2
u =

∫
tet

2
dt

⇔ et
2
u =

1

2
et

2
+ C

⇔ u =
1

2
+ Ce−t

2

Using the initial condition, we get

1 = u(0) =
1

2
+ C ⇔ C =

1

2
.

The solution is

u =
1

2
+

1

2
e−t

2
.
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(c) What is y(t)?

Solution. We have

y =
1

u
=

1
1
2

(
1 + e−t2

) =
2

1 + e−t2
.

(d) Confirm that the solution y(t) you found solves the original initial-value problem with p(t), g(t), y0

as in (b).

Solution. First verify that y(t) satisfies the initial condition

y(0) =
2

1 + 1
= 1.

We now want to show that

y′ = 2ty − ty2 = ty(2− y).

We have,

y′ = −2
(
1 + e−t

2)−2(− 2te−t
2)

=
4te−t

2(
1 + e−t2

)2
= t

2

1 + e−t2
2e−t

2

1 + e−t2
= ty

2e−t
2

1 + e−t2
.

Now check that

2− y = 2− 2

1 + e−t2
= 2

1 + e−t
2 − 1

1 + e−t2
= 2

e−t
2

1 + e−t2
.

So,

y′ = ty(2− y).
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11. Consider the system (16 Marks)

~x′ =

(
−1 −1

−α −1

)
~x

(a) Solve the system for α = 1/2. What are the eigenvalues of the coefficient matrix?

Classify the equilibrium point at the origin as to type (node / saddle-point / spiral) and asymp-

totical stability.

Solution. We compute the characteristic equation.

P (λ) = det(Iλ−A) =

∣∣∣∣∣λ+ 1 1

α λ+ 1

∣∣∣∣∣ = λ2 + 2λ+ 1− α = 0 =⇒ λ± = −1±
√
α

So in this case of α = 1/2, we have

λ1 = −1 +
1√
2

& λ2 = −1− 1√
2

Since both eigenvalues are negative and different, this is a node which is asymptotically stable.
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(b) Solve the system for α = 2. What are the eigenvalues of the coefficient matrix?

Classify the equilibrium point at the origin as to type (node / saddle-point / spiral) and asymp-

totical stability.

Solution. Using the above, we clearly see

λ1 = −1 +
√

2 & λ2 = −1−
√

2

In this case since the eigenvalues are of different signs, we have a saddle point, which is unstable.

(c) Notice the change of solutions from (a) to (b). What α is the critical point when solutions

begin to change. Justify your answer.

Solution. By the above, it is when

−1 +
√
α = 0 =⇒ α = 1
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12. A baseball pitcher (at position (0, 2) in meters) throws a ball horizontally (16 Marks)

to the batter (at position x = 18 m) at an initial velocity of

36 m/s.

The batter hits the ball with an impulse of 56
√

2 Ns at an

angle of π
4 .

Do not consider drag and do not give a numeric value for g.

(it could be Martian baseball!)

(a) How much time does the ball take to reach the batter?

Solution. Since the horizontal velocity is 36 m/s, it takes
1
2 s to cover the 18 m distance between the pitcher and the

batter.

x

y

(b) What is the height of the ball when the batter hits it?

Solution. The height y of the ball satisfies:

y′′ = −g,

and

y(0) = 2 and y′(0) = 0.

So it satisfies

y(t) = −g
2
t2 + 2,

so when the batter hits the ball, the height of the ball is

y
(
1
2

)
= −g

8
+ 2.
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(c) Write a system of differential equations that gives the position of the ball after the ball is thrown

by the pitcher.

(Hint. Dirac delta “function”)

Solution. The x and y components satisfyx′′ = 0

y′′ = −g

for all t > 0 except when the ball is struck at t = 1
2 , where it receives an impulse of 56 Ns. This

means that these components satisfyx′′ = −56 δ
(
t− 1

2

)
y′′ = −g + 56 δ

(
t− 1

2

)
with the initial conditions x(0) = 0

y(0) = 2
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(d) Find the position of the ball x(t) and y(t) for all t > 0.

Solution. Let X(s) = L {x(t)} (s) and Y (s) = L {y(t)} (s).

Then s2X(s)− 36 = −56e−
s
2

s2Y (s)− 2s = −g
s + 56e−

s
2

This means that X(s) = 36
s −

56
s2
e−

s
2

Y (s) = 2
s −

g
s3

+ 56
s2
e−

s
2

Apply the inverse Laplace transform:x(t) = 36t− 56(t− 1
2)u 1

2
(t)

y(t) = 2− 1
2gt

2 + 56(t− 1
2)u 1

2
(t)

This means that

x(t) =

36t if t < 1
2

28− 20t if t > 1
2

and y(t) =

−
g
2 t

2 + 2 if t < 1
2

−g
2 t

2 + 56t− 26 if t > 1
2
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Bonus. Assume that the “home run distance” is 150 m and they are in playing on Earth. (3 Marks)

Did the batter hit a homerun?

(Hint. it requires difficult inequalities – try only after you solved the other questions)

Solution. First we estimate the value of T when y(T ) = 0:

y = 0 ⇒ 2− 1

2
gT 2 + 56(T − 1

2
) = 0

⇒ g

2
T 2 − 56T + 26 = 0

⇒ T =
56 +

√
562 − 52g

g

⇒ T >
56 +

√
56(56− 10)

g

⇒ T >
56 +

√
56 · 46

g

⇒ T >
56 +

√
462

g

⇒ T >
56 + 46

g
=

102

g
> 10

This means that

x(T ) < x(10) = 360− 56(10− 1
2) = −200 + 28 < −150.

So the answer is: Yes, he did hit a home run (with a 1 kg ball !)
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13. Consider an completely insulated rod, which is modelled by the problem (16 Marks)

∂u

∂t
= 25

∂2u

∂x2
for 0 6 x 6 π, t > 0

∂u
∂x(0, t) = 0

∂u
∂x(π, t) = 0

u(x, 0) = 4 sin2(3x).

Find the solution u(x, t).

Hint.

(a) Write u(x, t) = φ(x)G(t) and find differential equations for G and φ and boundary conditions.

(b) Find G(t).

(c) Find eigenfunctions φ(x).

(d) Write down the general solution u(x, t).

(e) Write the initial condition as a Fourier series of the same form as φ. Recall that sin2(θ) =
1−cos(2θ)

2 .

(f) Conclude with the final formula for u(x, t).

Solution. Following the hint, I will split the solution in these 6 steps:

(a) Using separation of variables, I write u(x, t) = φ(x)G(t), then using this formula into the PDE, I get

φ(x)G′(t) = 25φ′′(x)G(t) ⇔ G′(t)

25G(t)︸ ︷︷ ︸
depends
only on t

=
φ′′(x)

φ(x)︸ ︷︷ ︸
depends
only on x

So both sides must be constant:

G′(t) = −25λG(t) ⇔ φ′′(x) = −λφ(x).

Moreover the boundary conditions imply that

φ′(0)G(t) = 0 ⇔ φ′(0) = 0 or G(t) = 0.

Since G(t) = 0 implies that we obtain a trivial solution u(x, t) = 0, we impose φ′(0) = 0.

Similarly, we impose φ′(π) = 0.
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(Continuation of solution to 14)

(b) Now, solve the DE for G(t):

G(t) = Ce−25λt.

(c) From the formula sheet, we know that

λn =
(nπ
π

)2
= n2φn(x) = cos(nx)

for n = 0, 1, 2, . . ..

(d) We just found a sequence of solutions:

u0(x, t) = 1un(x, t) = cos(nx)e−25n
2t.

Using the principle of superposition, we obtain the general solution

u(x, t) =
a0
2

+
∞∑
n=1

an cos(nx)e−25n
2t.

(e) To simplify the process of finding the constants an, we write

u(x, 0) = 4 sin2(3x) = 4
1− cos(6x

2
= 2− 2 cos(6x).

Since this function is already in the form of a cosine Fourier series, we obtain

a0
2

= 2 , a6 = −2 , an = 0 for n 6= 0, 6.

(f) The solution is

u(x, t) = 2− 2 cos(6x)e−30
2t = 2− 2 cos(6x)e−900t.
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